UNIT 4B: Supplemental Learn By Doing Materials

PART A - ANALYSES ARE PRODUCED FROM PULSE DATA which was an experiment, conducted on students in a statistics class. Students recorded their resting pulse and approximately half of students then ran for 1 minute where the other half continued sitting in their seats. Then each student measured their pulse a second time. Other variables were recorded. Information can be found in Topic 0B – Dataset Information.

[Case CQ - Two Dependent Samples] Paired T-Test comparing Pulse 2 to Pulse 1 for individuals who Sat

SAS Output

The TTEST Procedure

Difference: PULSE2 - PULSE1

Treatment = Sat

N	Mean	Std Dev	Std Err	Minimum	Maximum
62	-1.0323	3.9462	0.5012	-12.0000	8.0000

Mean	95% C	L Mean	Std Dev	95% (De	
-1.0323	-2.0344	-0.0301	3.9462	3.3534	4.7957

DF	t Value	Pr > t
61	-2.06	0.0437

SPSS Output

Paired Samples Statistics

	Mean	N	Std. Deviation	Std. Error Mean
Pulse after Treatment (bpm)	74.13	62	9.264	1.177
Resting Pulse (bpm)	75.16	62	10.309	1.309

Paired Samples Test

	Paired Differences							
		Crd	Chd Funn	95% Confiden				S:- /2
	Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2- tailed)
Pulse after Treatment (bpm) - Resting Pulse (bpm)	-1.032	3.946	<mark>.501</mark>	-2.034	030	-2.060	61	.044

Question Set A1: Among individuals who sat, conduct a paired t-test to determine if the mean change in pulse rate differs from zero using the output above.

Set up the hypotheses being tested and define the parameter used.

Ho: $\mu_d = 0$

Where μ_d = mean difference between <u>pulse 2 and pulse 1 in the population after sitting for 1 minute</u> = <u>population mean change in pulse after sitting for 1 minute</u>.

Ha: μ_d ≠ 0

What is the value of the test statistic given in the output?

t = -2.06

Are the conditions satisfied to conduct this test?

 $n = 62 \Rightarrow$ reasonable to apply t-test regardless of normality assumption.

What is the value of the p-value given in the output?

0.0437 or 0.044

What is your conclusion in context?

Here are three correct options

- 1. With a p-value of 0.044, there is (just barely) enough evidence to conclude that the population mean difference in pulse rates after sitting for 1 minute is not equal to zero.
- 2. With a p-value of 0.044, the <u>population mean change in pulse rate after sitting for 1 minute</u> is significantly different from zero.
- 3. With a p-value of 0.044, there is a statistically significant difference in the <u>population mean pulse rate before and</u> <u>after sitting for 1 minute</u>.

What type of error (Type I or Type II) could you have made and why? What would this error mean in context?

Since we rejected the null hypothesis, we could have made a type I error and rejected the null when in fact the null hypothesis is true.

In other words, we could have concluded that the <u>population mean change in pulse after sitting for 1 minute</u> is not equal to zero, when in fact it is zero.

Interpret the confidence interval given in the output for the population mean difference in context. **NOTE: When** statistically significant, confidence interval interpretations for differences should always clearly indicate which is larger/smaller and by how much (per the confidence interval estimate).

The confidence interval is (-2.034, -0.030). Here are two possible correct interpretations. The second includes information about the estimate of the mean change from our sample directly.

- 1. We are 95% confident that the <u>population mean pulse rate after sitting for 1 minute</u> is between <u>0.030 and 2.034</u> beats per minute <u>less than</u> the <u>population mean baseline pulse rate</u>.
- 2. <u>After sitting for 1 minute</u>, the <u>population mean pulse rate</u> is estimated to <u>decrease</u> by 1.032 beats per minute. The 95% confidence intervals suggests this <u>decrease</u> could be as little as 0.030 to as much as 2.034 beats per minute.

Instructor comments: It may seem strange that we are able to reject the null hypothesis. Two reasonable explanations:

- We could have a somewhat **rare event under the null** meaning that this group of students just happened to show a significant but small decrease when in fact the truth in the population is that there is, on average, no change.
- It also makes some sense that **pulse rates could decrease slightly after simply sitting for 1 minute** especially if before you were randomized to a treatment you thought you might have to get up and run around the room for 1 minute!
- The change, even if it exists in the population, may not have any practical importance. The confidence interval ranges from a 0.03 decrease to a 2.034 decrease as plausible values of the true change in the population. A difference of 0.03 is certainly not practically meaningful. A decrease of around 2 may have minor practical implications.

[Case CQ – Two Dependent Samples] Paired T-Test comparing Pulse 2 to Pulse 1 for individuals who Ran

SAS Output

The TTEST Procedure

Difference: PULSE2 - PULSE1

Treatment = Ran

N	Mean	Std Dev	Std Err	Minimum	Maximum
44	52.4091	20.5984	3.1053	12.0000	94.0000

Mean	95% CL Mean		L Mean Std Dev		95% CL Std Dev		
52.4091	<mark>46.1466</mark>	58.6716	20.5984	17.0189	26.0987		

DF	t Value	Pr > t
43	16.88	<.0001

SPSS Output

Paired Samples Statistics

	Mean	N	Std. Deviation	Std. Error Mean
Pulse after Treatment (bpm)	126.00	44	25.310	3.816
Resting Pulse (bpm)	73.59	44	11.384	1.716

Paired Samples Test

	Paired Differences							
		Crd	Ctd Funcu		95% Confidence Interval of the Difference			Si /2
	Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2- tailed)
Pulse after Treatment (bpm) - Resting Pulse (bpm)	<mark>52.409</mark>	20.598	<mark>3.105</mark>	<mark>46.147</mark>	<mark>58.672</mark>	<mark>16.877</mark>	43	.000

Question Set A2: Among individuals who ran, conduct a paired t-test to determine if the mean change in pulse rate differs from zero using the output above.

Set up the hypotheses being tested and define the parameter used.

Ho: $\mu_d = 0$

Where μ_d = mean difference between <u>pulse 2 and pulse 1 in the population after running for 1</u> minute = population mean change in pulse after running for 1 minute.

Ha: μ_d ≠ 0

What is the value of the test statistic given in the output?

t = 16.88

Are the conditions satisfied to conduct this test?

n = 44 ⇒ reasonable to apply t-test regardless of normality assumption.

What is the value of the p-value given in the output?

< 0.0001 or 0.000

What is your conclusion in context?

Here are three correct options

- The p-value is reported as < 0.0001 thus there is enough evidence to conclude that the <u>population mean difference</u> in <u>pulse rate after running for 1 minute</u> is not equal to zero.
- The p-value is reported as < 0.0001 thus the <u>population mean change in pulse rate after running 1 minute</u> is significantly different from zero.
- The p-value is reported as < 0.0001 thus there is a statistically significant difference in the <u>population mean pulse</u> rate before and after running 1 minute.

Note: There is very strong evidence here. We could call it "very highly statistically significant" or that there is "strong evidence" of a difference, etc.

Interpret the confidence interval given in the output for the population mean difference in context.

NOTE: When statistically significant, confidence interval interpretations for differences should always clearly indicate which is larger/smaller and by how much.

The confidence interval is (46.147, 58.672). Here are two possible correct interpretations. The second includes information about the estimate of the mean change from our sample directly.

- 1. We are 95% confident that the <u>population mean pulse rate after running for 1 minute</u> is between 46.147 and 58.672 beats per minute <u>larger than</u> the <u>population mean baseline pulse rate</u>.
- After running for 1 minute, the population mean pulse rate is estimated to increase by 52.409 beats per minute.
 The 95% confidence intervals suggests this increase could be as small as 46.147 to as much as 58.672 beats per minute.

What non-parametric test(s) would be appropriate as an alternative to the paired t-test in both Part A and Part B?

Sign-Test and the Wilcoxon Signed-Rank test

Instructor Comments:

- It makes complete sense that the mean change in pulse rate indicates an increase in pulse after running for 1 minute.
- Here the result of the test is less interesting as it is already known, but the confidence interval provides estimates of the actual value of the mean increase.
- In general, when we reject the null hypothesis, we could have made a Type I error and, in this case, claimed there is a change in the mean pulse rate when in fact there is not.
 - However, in this case we can certainly believe that we have made a correct decision.
 - The difficulty in practice comes in situations where we are less certain of the truth in the population when we have borderline p-values or results that are not practically significant.
- What if the sample size were small?
 - Then we would need to investigate the distribution of the differences in pulse rates with histograms, QQ-plots, and possibly boxplots and numeric summaries to determine the degree of concern with the normality assumption, if any.
- An activity and simulation about this issue is available in Means (All Steps)

WHAT'S NEXT?

We have already conducted the primary tests of interest for this experiment, however, from this point we will investigate other questions in this data, some of which are discussed below.

- There is some concern that some students chose not to run even though they were randomized to do so (the instructor was not always aware of the assignment such as when the student tossed their own coin). You can see from the sample sizes in the two groups that around 40% ran and 60% sat. However, if the distribution of all of the other variables is similar between the two treatment groups then even if there was such a problem, it will be less likely to introduce bias into our results. Thus we may investigate if the treatment variable whether the student ran or sat is associated with any of our other variables. If there are associations this could cause reason for concern.
- Although we studied the change in pulse rate and not the actual pulse rates measured, it may be of
 interest to see if there the resting (or baseline) pulse rate is associated with any of our other variables.
 This could be due to random chance or the impact of a certain group of students being more likely to
 disregard their assignment to run and instead remain sitting. Thus we may use the resting pulse rate as
 the basis for some of our work.
- Otherwise, we will look at any results that illustrate additional possibilities of interest.

[Case CQ - Two Independent Samples] Two sample t-test

Comparing between the treatment groups (ran or sat) for multiple variables simultaneously.

SAS and SPSS use different default tests for equality of variances so there is the possibility of different conclusions to the test for equality of variances and thus the possibility that different t-tests will be used to compare means. You should have the correct conclusion and use the correct tests based upon your software.

SPSS Output

If you have one primary binary variable and wish to run multiple t-tests for a number of other quantitative variables, you can do so in SPSS by putting multiple variables in the dependent variables box. You can only choose one dependent variable at a time. The results are combined as in the results that follow.

- In all of these tests there is a large p-value for the test for equal variances (first highlighted column). This results in continuing to assume equal variances and using the first row for the t-test results.
- The t-tests (assuming equal variances as we just mentioned above) also all have p-values larger than
 0.05 and thus our conclusion: We find no significant differences in the means between those who ran or sat for any of these variables (resting pulse, age, BMI, weight, and height).

Group Statistics

	Whether the student ran or sat	N	Mean	Std. Deviation	Std. Error Mean
Resting Pulse (bpm)	Ran	44	73.59	11.384	1.716
	Sat	62	75.16	10.309	1.309
Age (years)	Ran	44	20.18	2.863	.432
	Sat	62	20.90	4.626	.588
Body Mass Index (kg/sq. m)	Ran	44	22.1080	3.35056	.50512
	Sat	62	21.9409	3.32566	.42236
Weight (kg)	Ran	44	66.90	14.736	2.222
	Sat	62	66.44	15.116	1.920
Height (cm)	Ran	44	173.23	11.189	1.687
	Sat	62	173.21	9.534	1.211

Independent Samples Test

macpendent samples rest										
		Levene's Test of Var	t for Equality iances			t-t	est for Equality	of Means		
					Sig. (2-		Mean	Std. Error	95% Confidence Interval of the Difference	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Resting Pulse (bpm)	Equal variances assumed	.503	.480	740	104	.461	-1.570	2.122	<mark>-5.779</mark>	<mark>2.638</mark>
	Equal variances not assumed			728	86.871	.469	-1.570	2.159	-5.861	2.720
Age (years)	Equal variances assumed	1.590	.210	9 <mark>17</mark>	104	.361	721	.787	<mark>-2.282</mark>	<mark>.839</mark>
	Equal variances not assumed			990	102.332	.325	721	.729	-2.167	.725
Body Mass Index (kg/sq. m)	Equal variances assumed	.344	.559	<mark>.254</mark>	104	.800	<mark>.16715</mark>	.65759	<mark>-1.13687</mark>	<mark>1.47118</mark>
	Equal variances not assumed			.254	92.332	.800	.16715	.65843	-1.14048	1.47479
Weight (kg)	Equal variances assumed	.186	.667	<mark>.157</mark>	104	.876	<mark>.462</mark>	2.949	<mark>-5.386</mark>	<mark>6.310</mark>
	Equal variances not assumed			.157	94.177	.875	.462	2.936	-5.367	6.292
Height (cm)	Equal variances assumed	.956	.331	.009	104	.993	<mark>.018</mark>	2.021	-3.989	4.025
	Equal variances not assumed			.008	83.160	.993	.018	2.076	-4.112	4.147

If you have one primary binary variable and wish to run multiple t-tests for a number of other quantitative variables, you can do so in SAS by putting multiple variables in the VAR statement in PROC TTEST. You can only choose one dependent variable at a time (using the CLASS statement). The results are not combined, we have removed the first table in the t-test results with descriptive statistics to minimize the needed output.

- In all of these tests except that for AGE, there is a large p-value for the test for equal variances (last table, labeled Equality of Variances). This results in continuing to assume equal variances and using the POOLED row for the t-test results. For AGE we use the SATTERTHWAITE row for UNEQUAL variances.
- The t-tests (assuming equal variances for all tests except AGE as we just mentioned above) all have p-values larger than 0.05 and thus our conclusion: We find no significant differences in the means between those who ran or sat for any of these variables (resting pulse, age, BMI, weight, and height).

The TTEST Procedure

variable 1 elbb1 (1 inst passe incasar entera (epin/)								
TRT	Method	Mean	95% CI	L Mean	Std Dev	95% CI	L Std Dev	
Ran		73.5909	70.1298	77.0520	11.3840	9.4057	14.4239	
Sat		75.1613	72.5434	77.7792	10.3087	8.7599	12.5278	
Diff (1-2)	Pooled	-1.5704	-5.7789	2.6381	10.7663	9.4809	12.4581	
Diff (1-2)	Satterthwaite	-1.5704	-5.8608	2.7201				

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	104	-0.74	0.4610
Satterthwaite	Unequal	86.871	-0.73	0.4689

Equality of Variances						
Method Num DF Den DF F Value Pr						
Folded F	43	61	1.22	0.4709		

Variable: AGE (Age (years))

variable (192 (198 (jears))								
TRT	Method	Mean	95% CL Mean		Std Dev	95% CL Std Dev		
Ran		20.1818	19.3113	21.0524	2.8633	2.3658	3.6279	
Sat		20.9032	19.7284	22.0780	4.6260	3.9310	5.6219	
Diff (1-2)	Pooled	-0.7214	-2.2822	0.8393	3.9927	3.5161	4.6201	
Diff (1-2)	Satterthwaite	-0.7214	- 2.1674	0.7246				

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	104	-0.92	0.3615
Satterthwaite	Unequal	102.33	-0.99	0.3247

Equality of Variances							
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	61	43	2.61	0.0012			

Variable: BMI (Body Mass Index)

variable: Bhii (Body Mass Maca)								
TRT	Method	Mean	95% CL Mean		Std Dev	95% CL Std De		
Ran		22.1080	21.0894	23.1267	3.3506	2.7683	4.2452	
Sat		21.9409	21.0963	22.7854	3.3257	2.8260	4.0416	
Diff (1-2)	Pooled	0.1672	-1.1369	1.4712	3.3360	2.9377	3.8602	
Diff (1-2)	Satterthwaite	0.1672	-1.1405	1.4748				

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	104	0.25	0.7998
Satterthwaite	Unequal	92.332	0.25	0.8002

Equality of Variances							
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	43	61	1.02	0.9450			

Variable: WEIGHT (Weight (kg))

variable. WEIGHT (Weight (kg))								
TRT	Method	Mean	95% CL Mean		Std Dev 95% CL S		Std Dev	
Ran		66.8977	62.4175	71.3780	14.7363	12.1754	18.6712	
Sat		66.4355	62.5968	70.2742	15.1158	12.8448	18.3698	
Diff (1-2)	Pooled	0.4622	-5.3856	<mark>6.3101</mark>	14.9601	13.1740	17.3108	
Diff (1-2)	Satterthwaite	0.4622	-5.3673	6.2918				

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	104	0.16	0.8757
Satterthwaite	Unequal	94.177	0.16	0.8752

Equality of Variances									
Method Num DF Den DF F Value Pr > F									
Folded F	Folded F 61 43 1.05 0.870								

Variable: HEIGHT (Height (cm))

TRT	Method	Mean	95% CL Mean		Std Dev	95% CI	L Std Dev
Ran		173.2	169.8	176.6	11.1894	9.2449	14.1773
Sat		173.2	170.8	175.6	9.5336	8.1013	11.5859
Diff (1-2)	Pooled	0.0176	-3.9894	4.0246	10.2507	9.0269	11.8614
Diff (1-2)	Satterthwaite	0.0176	-4.1122	4.1474			

Method	Variances	DF	t Value	Pr > t	
Pooled	Equal	104	0.01	0.9931	
Satterthwaite	Unequal	83.16	0.01	0.9933	

Equality of Variances								
Method Num DF Den DF F Value Pr > F								
Folded F 43 61 1.38 0.2476								

[Case CQ - Two Independent Samples] Two sample t-test

Comparing Body Mass Index between Males and Females

In the results below, notice that we would reject the null hypotheses of equal variances.

- The test for equal variances has a p-value of 0.035 from SPSS or 0.0466 from SAS.
- This leads to looking in the row for the t-test results for which we DO NOT assume equal variances (labeled as SATTERTHWAITE in SAS).

In this analysis, the p-value for both t-tests are given as 0.000 by SPSS but **there are differences in the t-value, df, std. error, and confidence interval values between the equal and unequal variances rows for the t-test results**. In SAS the p-values of the two tests are slightly different and we would use 0.0001 from the SATTERTHWAITE row.

Here the p-value of the t-test is small so we reject the null hypothesis that the mean BMI is equal between males and females.

T-test Conclusion: There is enough evidence that the <u>population mean BMI</u> differs between <u>males</u> and <u>females</u>.

Confidence Interval interpretation: The 95% confidence interval estimates that the <u>population mean BMI</u> for males is between 1.18276 and 3.54222 <u>larger</u> than the <u>population mean BMI</u> for females.

Note: We know that males are larger than females because of the order used and the sign of the resulting confidence interval values. In both SAS and SPSS we see that Males are listed first and Females second. We have constructed the confidence interval for the difference in means as Males – Females. The confidence interval values are both positive and thus Males must be larger than Females for the difference to be positive.

SAS Output

Variable: BMI (Body Mass Index)

GENDER	N	Mean	Std Dev	Std Err	Minimum	Maximum
Male	57	23.1024	3.4847	0.4616	16.7968	32.1402
Female	49	20.7399	2.6261	0.3752	16.5889	29.0006
Diff (1-2)		2.3625	3.1179	0.6074		

GENDER	Method	Mean	95% CL Mean		Std Dev	95% CL	Std Dev
Male		23.1024	22.1778	24.0270	3.4847	2.9420	4.2748
Female		20.7399	19.9856	21.4942	2.6261	2.1900	3.2808
Diff (1-2)	Pooled	2.3625	1.1580	3.5670	3.1179	2.7457	3.6079
Diff (1-2)	Satterthwaite	2.3625	1.1828	3.5422			

Method	Variances	DF	t Value	Pr > t	
Pooled	Equal	104	3.89	0.0002	
Satterthwaite	Unequal	102.33	3.97	0.0001	

Equality of Variances								
Method Num DF Den DF F Value Pr > F								
Folded F 56 48 1.76 0.0466								

Group Statistics

	Gender	N	Mean	Std. Deviation	Std. Error Mean
Body Mass Index (kg/sq. m)	Male	57	23.1024	3.48470	.46156
	Female	49	20.7399	2.62611	.37516

Independent Samples Test

	Levene's Test for Equality of Variances					t-te	est for Equality	of Means		
									95% Confide of the Di	
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	Lower	Upper
Body Mass Index (kg/sq. m)	Equal variances assumed	4.571	.035	3.889	104	.000	2.36249	.60742	1.15796	3.56702
	Equal variances not assumed			3.972	102.329	.000	<mark>2.36249</mark>	.59480	1.18276	3.54222

[Case CQ – Two Independent Samples] Two sample t-test

Comparing <u>Resting Pulse Rates between Males and Females</u>

SAS Output

The TTEST Procedure

Variable: PULSE1 (First pulse measurement (bpm))

(a material (a material measurement (april))								
GENDER	N	Mean	Std Dev	Std Err	Minimum	Maximum		
Male	57	72.6667	10.0380	1.3296	49.0000	92.0000		
Female	49	76.6531	11.2334	1.6048	47.0000	104.0		
Diff (1-2)		-3.9864	10.6065	2.0663				

GENDER	Method	Mean	95% CL Mean		Std Dev	95% CI	95% CL Std Dev	
Male		72.6667	70.0032	75.3301	10.0380	8.4746	12.3141	
Female		76.6531	73.4264	79.8797	11.2334	9.3678	14.0339	
Diff (1-2)	Pooled	-3.9864	-8.0839	0.1111	10.6065	9.3402	12.2731	
Diff (1-2)	Satterthwaite	-3.9864	-8.1224	0.1496				

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	104	-1.93	0.0564
Satterthwaite	Unequal	97.241	-1.91	0.0587

Equality of Variances								
Method Num DF Den DF F Value Pr > 1								
Folded F	48	56	1.25	0.4158				

SPSS Output

Group Statistics

	Gender	N	Mean	Std. Deviation	Std. Error Mean
Resting Pulse (bpm)	Male	57	72.67	10.038	1.330
	Female	49	76.65	11.233	1.605

Independent Samples Test

		t-test for Equality of Means								
									95% Confidence Differ	
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper
Resting Pulse (bpm)	Equal variances assumed	.431	.513	-1.929	104	.056	-3.986	2.066	-8.084	.111
	Equal variances not assumed			-1.913	97.241	.059	-3.986	2.084	-8.122	.150

Question Set A3: Conduct a two-independent samples t-test comparing the population mean resting pulse rates between males and females using the output above.

Set up the hypotheses being tested and define the parameters involved.

Ho: $\mu_{\text{Males}} = \mu_{\text{Females}}$ (or $\mu_{\text{Males}} - \mu_{\text{Females}} = 0$; or $\mu_{\text{Females}} - \mu_{\text{Males}} = 0$)

Ha: $\mu_{\text{Males}} \neq \mu_{\text{Females}}$ (or $\mu_{\text{Males}} - \mu_{\text{Females}} \neq 0$; or $\mu_{\text{Females}} - \mu_{\text{Males}} \neq 0$)

- Where μ_{Males} = mean resting pulse rate of males in the population and
- \circ $\mu_{\text{Females}} = \underline{\text{mean resting pulse rate of females in the population}}$

Are the conditions satisfied to conduct this test?

n = 57 for males and 49 for females ⇒ reasonable to apply t-test regardless of normality assumption.

Should we assume equal variances?

Yes, Since the p-value of the test for equality of variances is large (SAS = 0.4158, SPSS = 0.513), we fail to reject the null hypothesis of this (embedded) test.

• The null hypothesis is that $\sigma_{Males} = \sigma_{Females}$.

Thus, although we cannot PROVE the null hypothesis, we have no evidence of a difference in the population standard deviations between these two groups and so we will assume the variances are equal for the purpose of the t-test to follow.

Note: The sample standard deviations in the two groups are very similar, 10.038 vs. 11.233

What is the value of the appropriate p-value **OF THE T-TEST**?

0.056 (assuming equal variances)

What is your conclusion OF THE T-TEST in context?

Here are two correct options

- 1. With a p-value of 0.056, there is NOT enough evidence to conclude that the <u>population mean resting pulse rate</u> differs between males and females.
- 2. With a p-value of 0.056, we did not find a statistically significant difference in the <u>population mean resting pulse</u> rate between males and females.

Note: Since the p-values is between 0.05 and 0.10, we could also say that the result is marginally significant, i.e. the p-value is small enough that we may feel future investigation of this question is needed.

Interpret the appropriate confidence interval given in the output for the difference in population means in context.

Note: When not significant you can simply provide the interval as in our 1st interpretation but in our 2nd interpretation below, we do include more specific information about what the values say in this situation.

The confidence interval is (-8.084, 0.111) which is constructed as MALES - FEMALES.

We are 95% confident that the difference in the <u>population mean resting pulse rate comparing males to females</u> is between -8.084 and 0.111.

We are 95% confident that the <u>population mean resting pulse rate</u> among <u>males</u> is between 8.084 <u>smaller</u> to 0.111 <u>larger</u> than that among <u>females</u>. (Must be careful not to get the values backwards!)

What type of error (Type I or Type II) could you have made and why? What would this error mean in context?

Since we failed to reject the null hypothesis, we could have made a type II error and failed to reject the null when in fact the null hypothesis is false (the alternative is true).

In other words, we could have been unable to conclude that the <u>population mean resting pulse rate</u> is different between <u>males</u> and <u>females</u> when it fact there is a difference in the population.

What non-parametric test(s) would be appropriate?

Wilcoxon Rank-Sum Test (Also known as Mann-Whitney U Test)

[Case CQ - Two Independent Samples] Two sample t-test

Comparing <u>CHANGE</u> in <u>Pulse Rate (After – Before) vs. Treatment (Ran or Sat)</u>

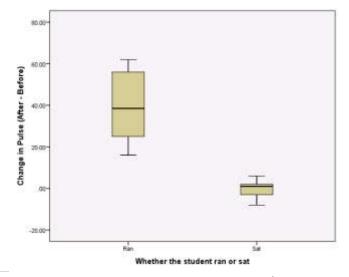
We certainly expect a difference in the means and we also find a significant difference in the variation. Both make biological sense. I created a **very small sample of size 17** for this t-test. Since there is such a huge effect on pulse rates from running vs. sitting, we will still find significance but **we will need to investigate whether** the distribution of the change in pulse rate is normally distributed in our two treatment groups or not.

The SAS output is not available for this example. The only difference is the location of the results in the output. The processes are the same.

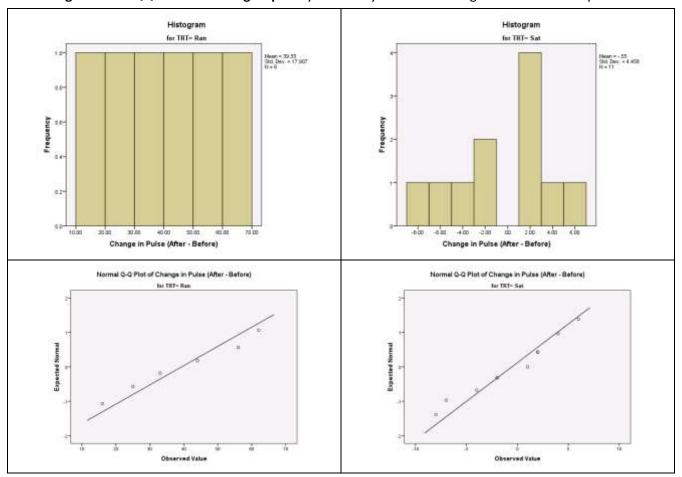
SPSS Output

Group Statistics

	Whether the student ran or sat	N	Mean	Std. Deviation	Std. Error Mean
Change in Pulse (After - Before)	Ran	6	39.3333	17.90717	7.31057
	Sat	11	5455	4.45788	1.34410


Independent Samples Test

			t for Equality iances			t-	test for Equalit	y of Means		
									95% Confiden	
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	Lower	Upper
Change in Pulse (After - Before)	Equal variances assumed	19.400	.001	7.169	15	.000	39.87879	5.56278	28.02201	51.73556
	Equal variances not assumed			5.365	5.341	.002	39.87879	7.43311	21.13225	58.62533


Since the sample sizes are small in our two groups, we will need to investigate the assumption of normality of the distributions of the differences our two groups.

Investigate the Distribution of Change in Pulse Rate between the Two Groups Graphically

- Side-by-Side Boxplots:
- Clearly shows both the difference in means and the difference in variation between the two treatment groups.

• Histograms and QQ-Plots for each group: Do you see any clear concerns given the small sample sizes?

Our Answer: Neither distribution is clearly normally distributed however with such a small sample size, we have no clear evidence of skewness or extreme outliers so we are left without a very clear answer here. In practice we would likely continue with the t-test with caution. Alternatively, we could always use a non-parametric alternative where we would not have the same assumption of normality.

Question Set A4: Conduct a two-independent samples t-test comparing the population mean change in pulse rate after 1 minute between those who ran and those who sat.

Set up the hypotheses being tested and define the parameters involved.

Ho:
$$\mu_{RAN} = \mu_{SAT}$$
 (or $\mu_{RAN} - \mu_{SAT} = 0$; or $\mu_{SAT} - \mu_{RAN} = 0$)

Ha:
$$\mu_{RAN} \neq \mu_{SAT}$$
 (or $\mu_{RAN} - \mu_{SAT} \neq 0$; or $\mu_{SAT} - \mu_{RAN} \neq 0$)

 \circ μ_{RAN} = population mean change in pulse rate after 1 minute among those who run and similar for μ_{SAT}

Are the conditions satisfied to conduct this test?

n = 6 for RAN and 11 for SAT ⇒ Need to investigate normality assumption

From the histograms and QQ-plots, there is no indication of skewness and we have no outliers so we have no immediate concerns and will continue with the t-test.

Should we assume equal variances?

NO! Since the p-value of the test for equality of variances is small (0.001), we reject the null hypothesis of this (embedded) test.

• The null hypothesis is that $\sigma_{RAN} = \sigma_{SAT}$.

Thus, we have evidence of a difference in the population standard deviations between these two groups and so we will assume the variances are unequal for the purpose of the t-test to follow.

Note: The sample standard deviations in the two groups are VERY different, 17.9 (for RAN) vs. 4.5 (for SAT)

What is the value of the appropriate p-value **OF THE T-TEST**?

0.002 (assuming unequal variances)

What is your conclusion **OF THE T-TEST** in context?

Here are two correct options

- With a p-value of 0.002, there is enough evidence to conclude that the <u>population mean change in pulse rate after</u>
 <u>1 minute</u> differs between those who <u>ran</u> and those who <u>sat</u>.
- 2. With a p-value of 0.002, we find a statistically significant difference in the <u>population mean change in pulse rate</u> <u>after 1 minute</u> between those who <u>ran</u> and those who <u>sat</u>.

Interpret the appropriate confidence interval given in the output for the difference in population means in context.

NOTE: When statistically significant, confidence interval interpretations for differences should always clearly indicate which is larger/smaller and by how much.

The confidence interval is (21.13, 58.63) which is constructed as RAN – SAT.

We are 95% confident that the <u>population mean change in pulse rate after 1 minute</u> is between 21.13 and 58.63 <u>larger</u> among those who <u>run</u> than the <u>population mean change in pulse rate after 1 minute</u> among those who <u>sit</u>.

The <u>population mean change in pulse rate after 1 minute</u> among those who run is estimated to be 39.9 beats per minute higher than the <u>population mean change in pulse rate after 1 minute</u> among those who sit. The 95% confidence intervals suggests this value could be as small as 21.13 to as much as 58.63 beats per minute.

What non-parametric test(s) would be appropriate? Wilcoxon Rank-Sum Test (Also known as Mann-Whitney U Test)

Instructor Comments:

- It makes sense that the mean change in pulse rate is larger for those who run than those who sit. Here the result of the test is less interesting than the confidence interval which provides an estimate of the effect of interest.
- When we reject the null hypothesis, we could have made a Type I error and claimed there is a difference in the
 population mean change in pulse rate when in fact there is not. However, in this case we can certainly believe that
 we have made a correct decision. As we said earlier, the difficulty in practice comes in situations where we are less
 certain of the truth in the population when we have borderline p-values or results that are not practically significant.

[Case CQ – More than Two Independent Samples] One-Way ANOVA (Analysis of Variance)

Comparing Resting Pulse Rate among Exercise Groups (3-Levels)

SPSS Output

This first table comes from requesting descriptives. From this we can see the sample sizes, how the sample means compare between the groups, and how the standard deviations compare.

Descriptives

Resting Pulse (bpm)

					95% Confidence Interval for Mean		-	
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
High	14	68.64	12.689	3.391	61.32	75.97	49	96
Moderate	56	74.23	10.657	1.424	71.38	77.09	47	104
Low	36	77.22	9.302	1.550	74.07	80.37	52	92
Total	106	74.51	10.743	1.043	72.44	76.58	47	104

This ANOVA TABLE is the default output and contains the main results required.

ANOVA

Resting Pulse (bpm)

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	751.072	2	375.536	3.403	.037
Within Groups	11367.419	103	110.363		
Total	12118.491	105			

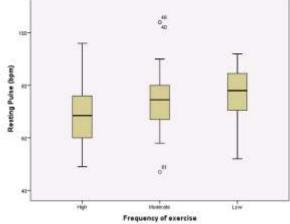
SAS Output

The GLM Procedure

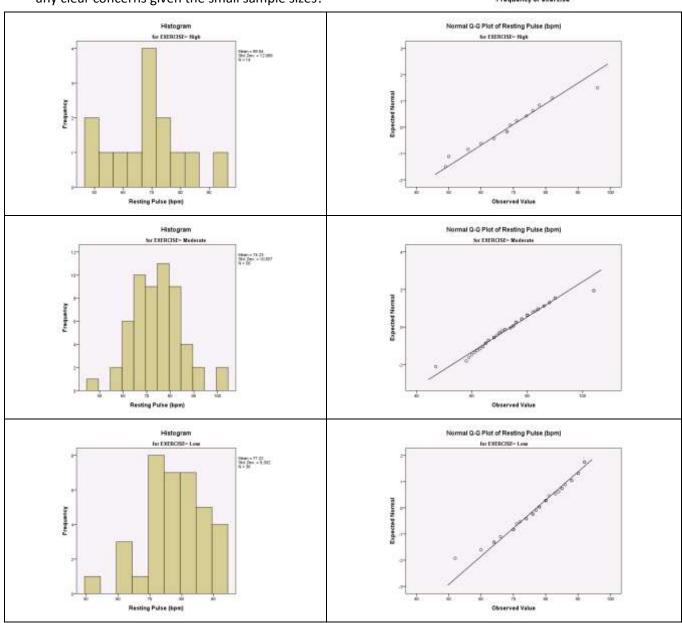
Dependent Variable: PULSE1 First pulse measurement (bpm)

Dependent variable. I CEBET Tust pulse medisarement (bpm)							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	2	751.07192	375.53596	3.40	0.0371		
Error	103	11367.41865	110.36329				
Corrected Total	105	12118.49057					

R-Square	Coeff Var	Root MSE	PULSE1 Mean
0.061977	14.09941	10.50539	74.50943


Source	DF	Type I SS	Mean Square	F Value	Pr > F
EXERCISE	2	751.0719152	375.5359576	3.40	0.0371

Source	DF	Type III SS	Mean Square	F Value	Pr > F
EXERCISE	2	751.0719152	375.5359576	3.40	0.0371


Investigate the Distribution between the groups graphically: Since the sample sizes in the groups are not all

larger than 30, we will investigate the distributions.

Side-by-Side Boxplots: Notice the order is alphabetical (the x-axis goes from High to Low) but the trend makes sense. The less you exercise, the higher your resting pulse rate. The variation seems similar between the boxplots so there is not immediate cause for concern about the assumption of equal variances required for the one-way ANOVA test. We do have two outliers in the moderate exercise group.

 Histograms and QQ-Plots for each group: Do you see any clear concerns given the small sample sizes?

Question Set A5: Conduct a one-way ANOVA test comparing the population mean resting pulse rate between the three exercise groups (Low, Moderate, High)

Set up the hypotheses being tested:

Ho: $\mu_{Low} = \mu_{Mod} = \mu_{High}$. (or there is no relationship between X and Y.)

Ha: not all μ's are equal. (There is a relationship between X and Y.)

Where μ_{Low} = mean pulse rate for those with low level of exercise in the population, similarly for μ_{Mod} & μ_{High}

Are the conditions satisfied to conduct this test?

EQUAL VARIANCES ASSUMPTION:

For the one-way ANOVA, regardless of the sample size, we have the assumption that the variances between the populations being compared are equal.

- From the boxplots, the variation seems reasonably similar so there is no immediate reason for concern.
- We could check the rule of thumb which finds the ratio of the largest standard deviation to that of the smallest. In this data we have the largest is about 12.7 and the smallest around 9.3. The ratio is 12.7/9.3 = 1.37 which is less than 2.
- Thus it is reasonable to assume the variances are equal

NORMALITY ASSUMPTION:

Although n = 36 for the LOW exercise group and n = 56 for the MODERATE exercise group, n is only 14 for the HIGH exercise group ⇒ Should investigate normality assumption

- From the histograms and QQ-plots, there are no extreme concerns.
- There are a few points which may be outliers based upon the QQ-plots but these are not extreme as no extreme outliers are seen in the histograms.
- The distribution from LOW is slightly skewed left but again this skewness is not extreme.
- Although we cannot be certain the distributions are normal the skewness and outliers seen are not extreme enough to imply clear non-normality. We could proceed with caution to conduct the ANOVA. Alternatively we could apply a non-parametric version which does not require the normality assumption.

What is the value of the p-value given in the output?

0.037

What is your conclusion in context?

Three possible answers:

- 1. With a p-value = 0.037, the difference in the population mean resting pulse rate is statistically significantly for at least two of the exercise groups (Low, Moderate, or High)
- 2. With a p-value = 0.037, there IS ENOUGH evidence to conclude that the population mean resting pulse rate of the three exercise groups (Low, Moderate, or High) are not all the same.
- 3. With a p-value = 0.037, there IS ENOUGH evidence to conclude that there is an association between exercise level (Low, Moderate, or High) and resting pulse rate.

What type of error (Type I or Type II) could you have made and why? What would this error mean in context?

Type I error. Since we rejected the null hypothesis, we could have rejected the null hypothesis when in fact, the null hypothesis is true.

In this case this would mean that we concluded there are some differences in the mean resting pulse rate between the three exercise groups when in fact the mean resting pulse rate is equal between the three groups.

What non-parametric test(s) would be appropriate?

Kruskal-Wallis Test

[Case CQ – More than Two Independent Samples] One-Way ANOVA (Analysis of Variance)

• Comparing Age between the weight groups (5-Levels)

SPSS Output

This first table comes from requesting descriptives.

Descriptives

Age (years)

					95% Confidence	Interval for Mean		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
<= 55	23	20.13	3.429	.715	18.65	21.61	18	34
56 - 60	26	19.69	1.436	.282	19.11	20.27	18	23
61 - 67	16	20.31	2.626	.656	18.91	21.71	18	28
68 - 79	21	21.76	5.214	1.138	19.39	24.14	18	41
80+	20	21.35	5.833	1.304	18.62	24.08	18	45
Total	106	20.60	3.990	.388	19.84	21.37	18	45

This ANOVA TABLE is the default output and contains the main results required.

ANOVA

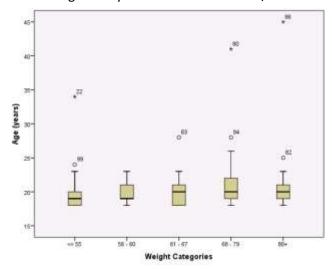
Age (years)

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	67.414	4	16.854	1.061	.380
Within Groups	1603.944	101	15.881		
Total	1671.358	105			

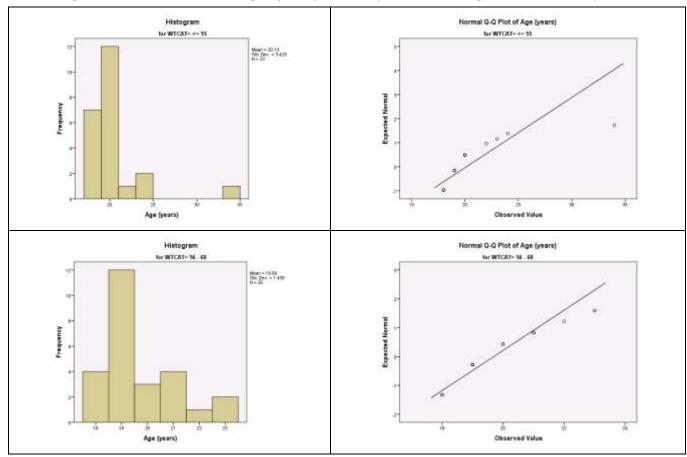
SAS Output

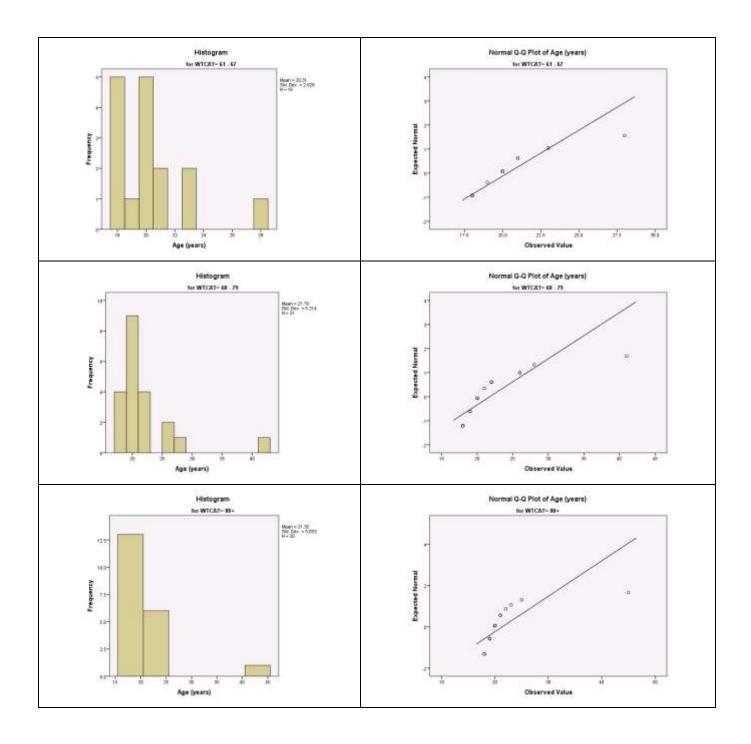
Dependent Variable: AGE Age (years)

Dependent variables 1102 11ge (jears)								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	4	67.414310	16.853577	1.06	0.3797			
Error	101	1603.944181	15.880635					
Corrected Total	105	1671.358491						


R-Square	Coeff Var	Root MSE	AGE Mean
0.040335	19.34137	3.985051	20.60377

Source	DF	Type I SS	Mean Square	F Value	Pr > F
WTGroups	4	67.41430957	16.85357739	1.06	0.3797


Source	DF	Type III SS	Mean Square	F Value	Pr > F
WTGroups	4	67.41430957	16.85357739	1.06	0.3797


Investigate the Distribution between the groups graphically: Since the sample sizes in the groups are all smaller than 30, we will investigate the distributions.

• Side-by-Side Boxplots: Notice that generally we have skewness and/or outliers in these distributions.

• Histograms and QQ-Plots for each group: Do you see any clear concerns given the small sample sizes?

Question Set A6: Conduct a one-way ANOVA test comparing the population mean age between the five weight groups.

Set up the hypotheses being tested:

Ho: The population mean age is the same for all weight groups. (There is no relationship between age and weight groups)

Ha: not all population mean ages are equal between the weight groups. (There is a relationship between age and weight groups.)

Are the conditions satisfied to conduct this test?

EQUAL VARIANCES ASSUMPTION: For the one-way ANOVA, regardless of the sample size, we have the assumption that the variances between the populations being compared are equal.

- From the boxplots, we have numerous outliers which are likely to impact the standard deviation.
- Looking at the descriptives the largest standard deviation is 5.833 and the smallest is 1.436. Checking the rule
 of thumb, the ratio is 5.8333/1.436 = 4.06 which is larger than two indicating concern about the assumption of
 equal variances.

NORMALITY ASSUMPTION: The sample sizes are small for all weight groups. ⇒ Should investigate normality assumption

From the histograms and QQ-plots, the distribution of age is highly skewed, many with extreme outliers.

Overall, there are serious concerns with using this test for this data.

What is the value of the p-value given in the output?

0.380

What non-parametric test(s) would be appropriate?

Kruskal-Wallis Test

[Case CQ – More than Two Independent Samples] Kruskal-Wallis (Non-Parametric Analysis of Variance)

Since there are concerns with the standard one-way ANOVA, we could use the Kruskal-Wallis non-parametric test. Here, the p-value is 0.44 resulting in the same conclusion. We would fail to reject the null hypothesis.

Conclusion: There is not enough evidence of an association between age and the multi-level weight groups.

SPSS Output

	Null Hypothesis	Test	Sig.	Decision
1	The distribution of Age (years) the same across categories of Weight Categories.	is Independent- Samples Kruskal- Wallis Test	.439	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is .05.

SAS Output

The NPARIWAY Procedure

Kruskal-Wallis Test					
Chi-Square	3.7600				
DF	4				
Pr > Chi-Square	0.4395				

[Case CC] Chi-Square Test (Pearson's or Continuity Corrected)

Is there an association between the treatment (ran or sat) and gender?

SPSS Output

Crosstab

			Gender		
			Male	Female	Total
Whether the student ran or sat	Ran	Count	22	22	44
		% within Whether the student ran or sat	50.0%	50.0%	100.0%
	Sat	Count	35	27	62
		% within Whether the student ran or sat	56.5%	43.5%	100.0%
Total		Count	57	49	106
		% within Whether the student ran or sat	53.8%	46.2%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	.431ª	1	.512		
Continuity Correction ^b	.210	1	.646		
Likelihood Ratio	.431	1	.512		
Fisher's Exact Test				.557	.323
Linear-by-Linear Association	.427	1	.514		
N of Valid Cases	106				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 20.34.

Note: The appropriate Fisher's Exact test p-value is highlighted in green for those interested in learning more about this test. This result is automatically generated for 2x2 tables in some versions of SPSS.

SAS Output

Table of TRT by GENDER						
TRT(Whether the student ran or sat) GENDER(Gender						
Frequency						
Percent						
Row Pct						
Col Pct	Male	Female	Total			
Ran	22	22	44			
	20.75	20.75	41.51			
	50.00	<mark>50.00</mark>				
	38.60	44.90				
Sat	35	27	62			
	33.02	25.47	58.49			
	56.45	43.55				
	61.40	55.10				
Total	57	49	106			
	53.77	46.23	100.00			

Statistic	DF	Value	Prob
Chi-Square	1	0.4309	0.5115
Likelihood Ratio Chi-Square	1	0.4308	0.5116
Continuity Adj. Chi-Square	1	0.2105	0.6464
Mantel-Haenszel Chi-Square	1	0.4269	0.5135
Phi Coefficient		-0.0638	
Contingency Coefficient		0.0636	
Cramer's V		-0.0638	

Fisher's Exact Test				
Cell (1,1) Frequency (F)	22			
Left-sided Pr <= F	0.3231			
Right-sided Pr >= F	0.8035			
Table Probability (P)	0.1266			
Two-sided Pr <= P	0.5568			

Sample Size = 106

b. Computed only for a 2x2 table

Question Set A7: Conduct the appropriate chi-square test for independence to test for an association between the treatment (ran or sat) and gender?

Set up the hypotheses being tested:

Ho: Gender and Treatment are independent (There is no association between gender and treatment)

Ha: Gender and Treatment are dependent (There is an association between gender and treatment)

Do you have any concerns about using the chi-square test? Explain.

No, since all expected cell counts are greater than 5. The minimum expected cell count is 20.34.

Note: SAS would leave a warning if there were an issue and SPSS always reports the percentage of cells with expected counts less than 5 and provides the minimum expected count.

What is the p-value of the appropriate chi-square test given in the output?

0.646 (Since this test uses two binary variables, we use the continuity corrected version)

What is your conclusion in context?

Based upon this data, there is not enough evidence to conclude that there is an association between gender and our treatment variable (whether the student ran or sat).

Compare the distribution of gender between the treatment groups using the appropriate conditional percentages.

Among those who ran, 50% were female and 50% were male. Among those who sat, 43.5% were female and 56.5% were male.

[Case CC] Chi-Square Test (Pearson's or Continuity Corrected)

• Is there an association between gender and our binary body mass index variable?

SPSS Output

Crosstab

		Biinary Body M				
		Normal and Underweight	Overweight or Obese	Total		
Male	Count	41	16	57		
	% within Gender	71.9%	28.1%	100.0%		
Female	Count	46	3	49		
	% within Gender	93.9%	6.1%	100.0%		
	Count	87	19	106		
	% within Gender	82.1%	17.9%	100.0%		
		% within Gender Female Count % within Gender Count	Male Count 41 % within Gender 71.9% Female Count 46 % within Gender 93.9% Count 87	Male Count 41 16 % within Gender 71.9% 28.1% Female Count 46 3 % within Gender 93.9% 6.1% Count 87 19		

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	8.627°	1	.003		
Continuity Correction ^b	7.200	1	.007		
Likelihood Ratio	9.449	1	.002		
Fisher's Exact Test				.004	.003
Linear-by-Linear Association	8.546	1	.003		
N of Valid Cases	106				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 8.78.

Note: The appropriate Fisher's Exact test p-value is highlighted in green for those interested in learning more about this test. This result is automatically generated for 2x2 tables in some versions of SPSS.

SAS Output

Table of GENDER by BinaryBMI						
GENDER(Gender)	BinaryBMI(Binary Body Mass Index)					
Frequency Percent Row Pct						
Col Pct	< 25	25+	Total			
Male	41 38.68 71.93 47.13	16 15.09 28.07 84.21	57 53.77			
Female	46 43.40 93.88 52.87	3 2.83 <mark>6.12</mark> 15.79	49 46.23			
Total	87 82.08	19 17.92	106 100.00			

Statistic	DF	Value	Prob
Chi-Square	1	8.6275	0.0033
Likelihood Ratio Chi-Square	1	9.4486	0.0021
Continuity Adj. Chi-Square	1	7.2001	0.0073
Mantel-Haenszel Chi-Square	1	8.5461	0.0035
Phi Coefficient		-0.2853	
Contingency Coefficient		0.2743	
Cramer's V		-0.2853	

Fisher's Exact Test				
Cell (1,1) Frequency (F)	41			
Left-sided Pr <= F	0.0028			
Right-sided Pr >= F	0.9996			
Table Probability (P)	0.0024			
Two-sided Pr <= P	0.0044			

Sample Size = 106

b. Computed only for a 2x2 table

Question Set A8: Conduct the appropriate chi-square test for independence to test for an association between the Binary BMI and gender?

Set up the hypotheses being tested:

Ho: Gender and Binary BMI are independent (There is no association between gender and Binary BMI)

Ha: Gender and Binary BMI are dependent (There is an association between gender and Binary BMI)

Do you have any concerns about using the chi-square test? Explain.

No, since all expected cell counts are greater than 5. The minimum expected cell count is 8.78.

Note: SAS would leave a warning if there were an issue and SPSS always reports the percentage of cells with expected counts less than 5 and provides the minimum expected count.

What is the p-value of the appropriate chi-square test given in the output?

0.007 (Since this test uses two binary variables, we use the continuity corrected version)

What is your conclusion in context?

Based upon this data, there is enough evidence to conclude that there is an association between gender and Binary BMI.

Compare the distribution of binary BMI between the males and females using the appropriate conditional percentages.

Among males, 28.1% are overweight or obese whereas among females, only 6.1% were classified as overweight or obese.

[Case CC] Chi-Square Test (Pearson's or Continuity Corrected)

• Is there an association between gender and the multi-level body mass index variable?

SPSS Output

Crosstab

			Body	Body Mass Index Categories			
			Underweight	Normal	Overweight	Obese	Total
Gender	Male	Count	5	36	14	2	57
		% within Gender	8.8%	63.2%	24.6%	3.5%	100.0%
	Female	Count	10	36	3	0	49
		% within Gender	20.4%	73.5%	6.1%	0.0%	100.0%
Total		Count	15	72	17	2	106
		% within Gender	14.2%	67.9%	16.0%	1.9%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	10.239ª	3	.017
Likelihood Ratio	11.590	3	.009
Linear-by-Linear Association	9.598	1	.002
N of Valid Cases	106		

a. 2 cells (25.0%) have expected count less than 5. The minimum expected count is .92.

SAS Output

Table of GENDER by BMIGroups							
GENDER(Gender)	BMIG	BMIGroups(Body Mass Index Categories)					
Frequency							
Percent							
Row Pct							
Col Pct	< 18.5	[18.5, 25)	[25, 30)	30+	Total		
Male	5	36	14	2	57		
	4.72	33.96	13.21	1.89	53.77		
	<mark>8.77</mark>	63.16	24.56	3.51			
	33.33	50.00	82.35	100.00			
Female	10	36	3	0	49		
	9.43	33.96	2.83	0.00	46.23		
	20.41	<mark>73.47</mark>	6.12	0.00			
	66.67	50.00	17.65	0.00			
Total	15	72	17	2	106		
	14.15	67.92	16.04	1.89	100.00		

DF	Value	Prob			
3	10.2389	0.0166			
3	11.5903	0.0089			
1	9.5979	0.0019			
	0.3108				
	0.2968				
	0.3108				
WARNING: 25% of the cells have expected counts less than 5. Chi-Square may not be a valid test.					
	3 3 1	3 10.2389 3 11.5903 1 9.5979 0.3108 0.2968 0.3108			

Sample Size = 106

Question Set A9: Conduct the appropriate chi-square test for independence to test for an association between gender and BMI groups?

Set up the hypotheses being tested:

Ho: Gender and BMI groups are independent (There is no association between gender and BMI groups)

Ha: Gender and BMI groups are dependent (There is an association between gender and BMI groups)

Do you have any concerns about using the chi-square test? Explain.

YES, the minimum expected cell count is 0.92 and 25% of cells have expected counts less than 5.

We should consider using Fisher's exact test instead to obtain a more reliable p-value for this test.

What is the p-value of the appropriate chi-square test given in the output?

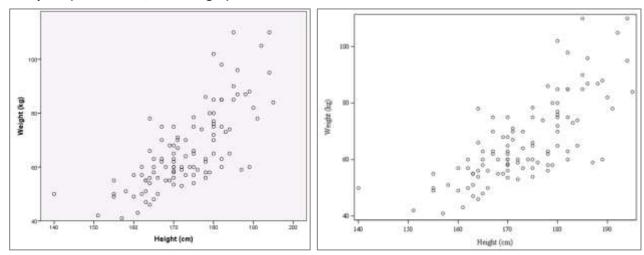
0.017

Since we have more than 2 levels for a variable, we do not get the continuity correction and the appropriate chi-square is the standard Pearson's chi-square, however as mentioned above, we have concerns about using this value.

What is your conclusion in context? Answer this question completely regardless of your answer regarding concerns about this test. (On the course project we will generally ask you to provide conclusions and interpretations even if you have concerns in order to assess your understanding of these tests).

Although we have concerns, we are asked to still provide the conclusion based upon the p-value of this test. Our conclusion would be:

Based upon this data, there is enough evidence to conclude that there is an association between gender and BMI groups.


What non-parametric test(s) would be appropriate?

Fisher's Exact Test

[Case QQ] Scatterplots, Correlation, and Regression

• Is there a linear relationship between height and weight in the entire sample?

Scatterplot: (SPSS on left, SAS on right)

Pearson's Correlation Coefficient: (SPSS on left, SAS on right)

Correlations

		Height (cm)	Weight (kg)
Height (cm)	Pearson Correlation	1	.741**
	Sig. (2-tailed)		.000
	Ν	106	106
Weight (kg)	Pearson Correlation	.741**	1
	Sig. (2-tailed)	.000	
	N	106	106

Pearson Correlation Coefficients, N = 106 Prob > r under H0: Rho=0						
	HEIGHT WEIGH					
HEIGHT Height (cm)	1.00000	0.74052 <.0001				
WEIGHT Weight (kg)	0.74052 <.0001	1.00000				

Correlation is listed first in the cell in the table and the p-value (Prob > |r|) is second.

Note: These are usually presented paired in this way where the information is repeated – this helps when you are looking at many variables from numerous angles. The repeated information is highlighted in green above.

Useful Linear Regression Tables:

Model Summary^b

				Std. Error of the
Model	R	R Square	Adjusted R Square	Estimate
1	.741 ^a	.548	.544	10.055

a. Predictors: (Constant), Height (cm)b. Dependent Variable: Weight (kg)

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	12766.571	1	12766.571	126.276	.000 ^b
	Residual	10514.460	104	101.101		
	Total	23281.031	105			

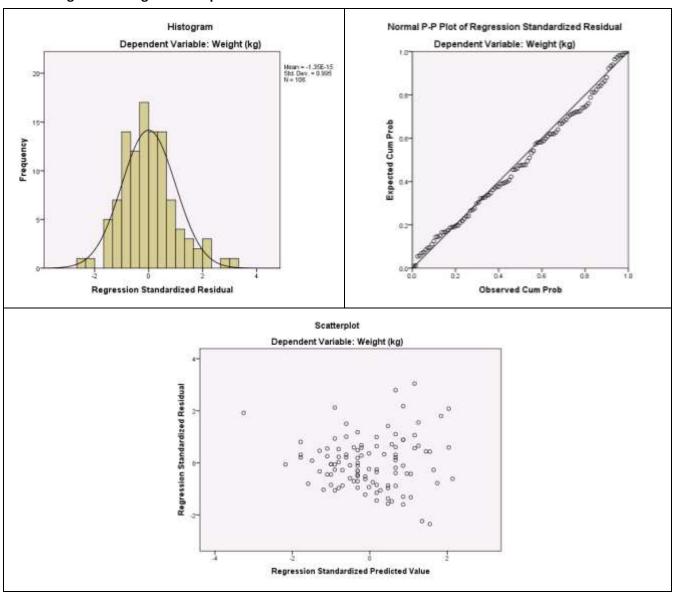
a. Dependent Variable: Weight (kg)b. Predictors: (Constant), Height (cm)

Coefficients^a

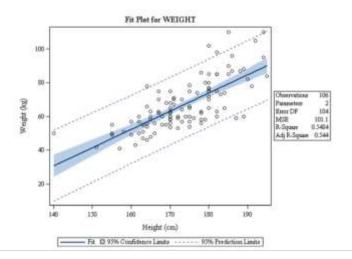
		Unstandardized Coefficients		Standardized Coefficients			95.0% Confiden	ce Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	-120.595	16.689		-7.226	.000	-153.690	-87.499
	Height (cm)	1.081	<mark>.096</mark>	.741	<mark>11.237</mark>	.000	.890	1.272

a. Dependent Variable: Weight (kg)

Residuals Statistics^a


	<mark>Minimum</mark>	<mark>Maximum</mark>	<mark>Mean</mark>	Std. Deviation	N
Predicted Value	30.72	90.17	66.63	11.027	106
Residual	-23.686	30.637	.000	10.007	106
Std. Predicted Value	-3.256	2.135	.000	1.000	106
Std. Residual	-2.356	3.047	.000	.995	106

a. Dependent Variable: Weight (kg)

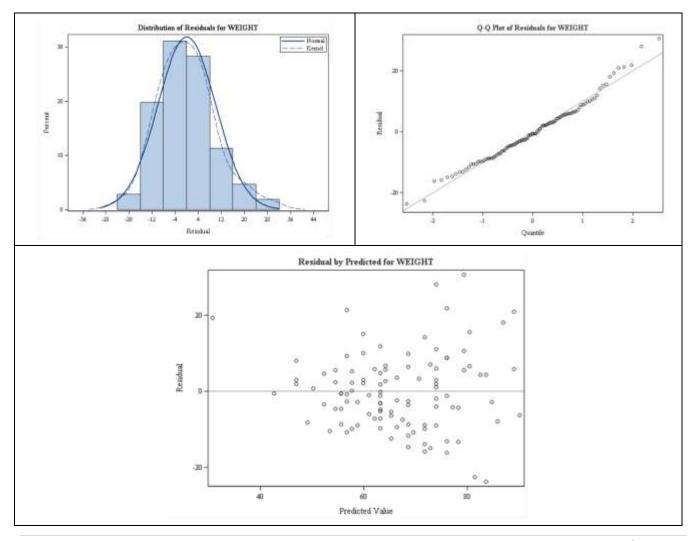

Note: The highlighted rows and columns contain possibly useful information about the predicted values and residuals for our model.

- Here the minimum predicted Weight (kg) is 30.72 and the maximum is 90.17. This can be helpful to see if the model predictions go outside reasonable values.
- The largest negative and positive residuals are off by 23.686 and 30.637 kg respectively which are
 fairly large considering that the weight values ranged from around 40 kg to around 120 kg. This
 means for these individuals (whose actual predicted values result in the largest and smallest
 residuals), our model prediction is off by 23.7 kg and 30.6 kg respectively.
- The standardized values can help determine if any of the predicted values or residuals is very
 extreme. Here we do have values above 3 which are somewhat outside the range of what we
 would like to see in a perfect scenario (values between around 2 and -2 with an occasional value
 slightly outside that range, especially for large sample sizes.)

Linear Regression Diagnostic Graphs:

SAS Output

The REG Procedure Model: MODEL1


Dependent Variable: WEIGHT Weight (kg)

Number of Observations Read	106
Number of Observations Used	106

Analysis of Variance							
Sum of Mean							
Source	DF	Squares	Square	F Value	Pr > F		
Model	1	12767	12767	126.28	<.0001		
Error	104	10514	101.10058				
Corrected Total	105	23281					

Root MSE	10.05488	R-Square	0.5484
Dependent Mean	66.62736	Adj R-Sq	0.5440
Coeff Var	15.09122		

Parameter Estimates								
	Parameter Standard							
Variable	Label	DF	Estimate	Error	t Value	Pr > t	95% Confide	ence Limits
Intercept	Intercept	1	-120.59472	16.68943	-7.23	<.0001	-153.69049	-87.49895
HEIGHT	Height (cm)	1	1.08085	<mark>0.09618</mark>	11.24	<.0001	0.89011	1.27159

Question Set A10: Answer the following questions regarding the relationship between height and weight in the entire sample.

Based upon the scatterplot, is linear regression and correlation a reasonable analysis?

Yes, the scatterplot shows an overall linear trend which is increasing. Note: There is some evidence of increasing variation with increasing height which may be an issue to investigate.

What is the value of Pearson's Correlation Coefficient and it's two-sided p-value?

Correlation = 0.741 with two-sided P-value = 0.000.

Interpret the value of the correlation coefficient.

A correlation of 0.741 indicates the linear relationship seen in the scatterplot is positive and fairly strong.

The regression equation is:

Predicted WEIGHT = -120.595 + 1.081(HEIGHT)

Interpret R-square in context.

Approximately 54.8% of the variation in weight can be explained by height.

Interpret the slope in context.

For each 1-unit increase in HEIGHT the mean WEIGHT is estimated to increase by 1.081 units.

Are there any concerns with the assumption that the error term is normally distributed?

No. The histogram shows a reasonably symmetric distribution and the PP-plot (SPSS) and QQ-plot (SAS) shows very little deviation from the line indicating that there is no concern about the assumption of normality of the error term.

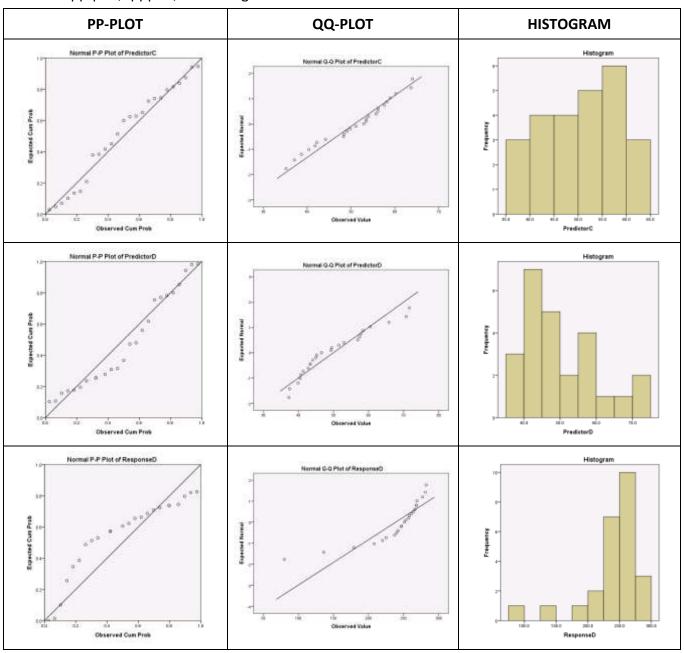
Are there any concerns with the assumption of constant variance around the regression line?

Yes. The scatterplot of the residuals vs. the predicted values shows much larger variation for larger predicted values. Overall there seems to be a funnel or fan shape here where we want to see random scatter around zero across the entire range of predicted values.

State the p-value for the slope and provide a conclusion to the associated test in context.

The p-value for the slope is 0.000. We reject the null hypothesis.

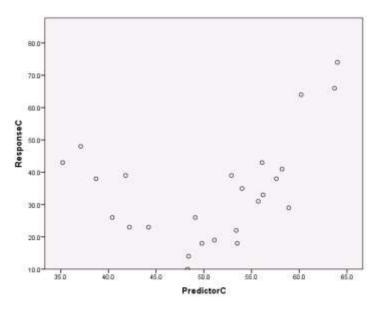
Here the null hypothesis of the associated test is that the true slope in the population is zero (there is no association between the variables) vs. the alternative hypothesis is that the true slope in the population is not zero (there is an association).


Conclusion:

- There is enough evidence that the true slope in the population relating weight to height is not zero.
- There is enough evidence that there is an association between height and weight.

PP-Plots: These are similar to QQ-plots in that they help investigate normality.

- The difference between QQ-plots and PP-plots is that PP-plots will always start and end at (0,0) and (1,1) on the line drawn since the plot is based upon probabilities. The QQ-plot is based upon quantiles/percentiles and points can deviate from the line at the ends.
- For both, any systematic deviations from the line indicate potential non-normality. The more severe deviations, the more concern we have.


Here is a pp-plot, qq-plot, and histogram for a few simulated variables.

[Case QQ] Scatterplots, Correlation, and Regression

Simulated Data for Regression

Scatterplot: (SPSS Only)

Pearson's Correlation Coefficient: (SPSS Only)

Correlations

		PredictorC	ResponseC		
PredictorC	Pearson Correlation	1	.374		
	Sig. (2-tailed)		.066		
	N	25	25		
ResponseC	Pearson Correlation	.374	1		
	Sig. (2-tailed)	.066			
	N	25	25		

Linear Regression Tables:

Descriptive Statistics

	Mean	Std. Deviation	N
ResponseC	34.400	16.1658	25
PredictorC	50.828	8.1795	25

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.374 ^a	.140	.102	15.3173

a. Predictors: (Constant), PredictorCb. Dependent Variable: ResponseC

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	875.741	1	875.741	3.733	.066 ^b
	Residual	5396.259	23	234.620		
	Total	6272.000	24			

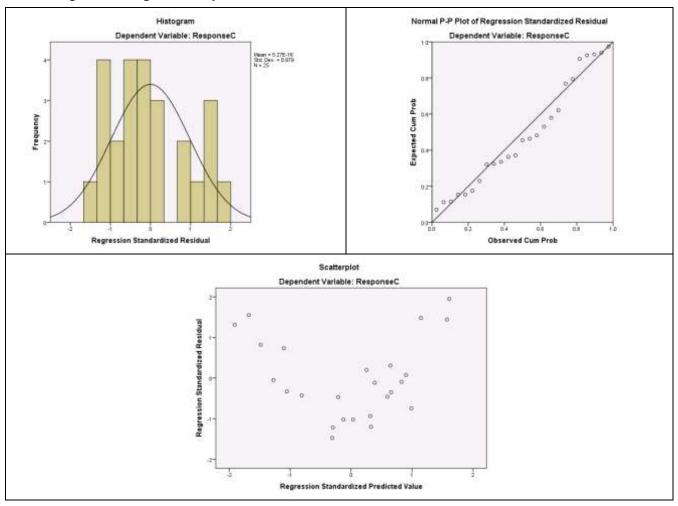
a. Dependent Variable: ResponseCb. Predictors: (Constant), PredictorC

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-3.137	19.669		159	.875
	PredictorC	.739	.382	.374	1.932	.066

Coefficients^a

		95.0% Confidence Interval for B		
Model		Lower Bound	Upper Bound	
1	(Constant)	-43.826	37.552	
	PredictorC	052	1.529	


a. Dependent Variable: ResponseC

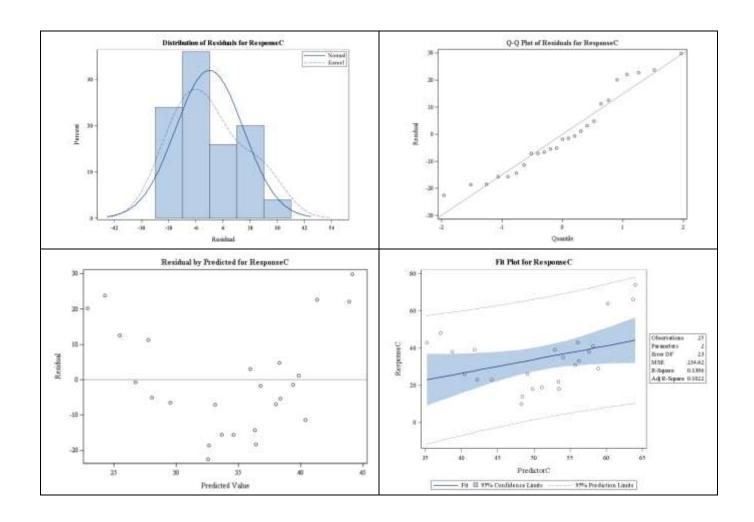
Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	22.859	44.128	34.400	6.0406	25
Residual	-22.5330	29.8723	.0000	14.9948	25
Std. Predicted Value	-1.911	1.610	.000	1.000	25
Std. Residual	-1.471	1.950	.000	.979	25

a. Dependent Variable: ResponseC

Linear Regression Diagnostic Graphs:

SAS Output


The REG Procedure
Model: MODEL1
Dependent Variable: ResponseC

Number of Observations Read	
Number of Observations Used	25

Analysis of Variance								
	Sum of Mean							
Source	DF	Squares	Square	F Value	Pr > F			
Model	1	875.74110	875.74110	3.73	0.0658			
Error	23	5396.25890	234.61995					
Corrected Total	24	6272.00000						

Root MSE	15.31731	R-Square	0.1396
Dependent Mean	34.40000	Adj R-Sq	0.1022
Coeff Var	44.52706		

Parameter Estimates								
		Parameter	Standard			95% Confidence		
Variable	DF	Estimate	Error	t Value	Pr > t	Limits		
Intercept	1	-3.13704	19.66922	-0.16	0.8747	-43.82591	37.55184	
PredictorC	1	0.73851	0.38225	1.93	0.0658	-0.05224	1.52926	

Question Set A11: Answer the following questions regarding the relationship between Predictor C and Response C.

Based upon the scatterplot, is linear regression and correlation a reasonable analysis?

NO, clearly the scatterplot shows a non-linear relationship. Indeed it is more quadratic in nature with both increasing and decreasing components.

What is the value of Pearson's Correlation Coefficient and it's two-sided p-value. .

Correlation = 0.374 with two-sided P-value = 0.066.

Interpret the value of the correlation coefficient.

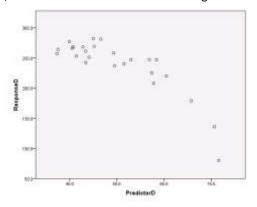
A correlation of 0.374 would imply the best line through the data is increasing and somewhat weak.

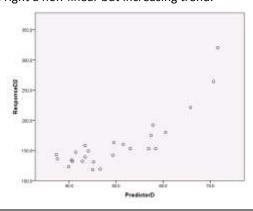
However, this is not useful as a measure for this data since the relationship is not linear.

From the scatterplot it seems we have a strong non-linear association between these two variables.

Note: The scatterplot of the residuals vs. the predicted values clearly shows the non-linear trend.

We are not discussing any other components here since linear regression and correlation are not appropriate.


In this case, we cannot use Spearman's rank correlation since the scatterplot indicates both increasing and decreasing components.


We have not learned how to handle this situation using regression methods but non-linear modeling is possible.

Note: Spearman's Rank Correlation

Here are two scatterplots which illustrate non-linear associations for which Spearman's rank correlation **would be** appropriate.

On the left, we have a non-linear but decreasing trend and on the right a non-linear but increasing trend.

