Unit 3A: Probability
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Now we will discuss independent events and conditional probability. These topics, although very
important on their own, will also give us the background needed for our two rules for finding P(A
and B) when we cannot easily use logic and counting.

We will begin with a logical definition of independent events.

The first thing to note is to throw away any definition you may have of the word “independent” or
“independence” in the English language. You must base what you understand about our definition
of independent events only on what we have to say about it.

In English, we often think of independent as being separate, not overlapping. However, we already
have a definition for that, which is disjoint events. In probability DISJOINT events are events that do
not overlap, that cannot occur at the same time.



Two events are independent if knowing one event occurs
does not change the probability of the other

This is not the same as “disjoint” events which are
separate in that they cannot occur together

These are two different concepts entirely

Independence is a statement about the equality of the
probability of one event whether or not the other event
occurs (or is occurring, or has occurred)
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The probability definition of independent events is a statement about the equality of probabilities.
We will introduce the definition here and discuss some simple examples. Later we will formalize the
definition in probability notation.

Two events are independent if knowing one event occurs does not change the probability of the
other event.

For example. If | roll a die twice and record the result for each toss. The fact that | rolled a 1 on the
first toss does not change the probability of rolling a 1 on the second toss. The events

* A =getting a 1 on the first toss and

* B =getting a 1 on the second toss

Are independent. Knowing that A happens, does not change the probability of B.

Another example, more appropriate for us, is what if we draw two people from the entire US
population at random and ask them whether or not they have ever had a heart attack. If the first
person says yes, this will not change the probability that the second person will say yes. These two
events are independent.

Before illustrating further, we point out that it isn’t necessary to fully understand all of the
mathematical details for the differences between disjoint and independent events but it is very
important to not confuse these two concepts when applying rules as this type of confusion can
easily lead to picking the wrong rule.



ASSUME INDEPENDENT:

Repeated Sampling from any population where
individuals are “replaced”

Repeated Sampling from very large populations where
individuals are NOT “replaced”

TEST FOR:

Results from unrelated questions asked of individuals in
the population will result in independent events
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We will be able to assume that two events are independent when:
We take repeated samples from any population where the individuals are replaced.
* Draw a card, put it back and reshuffle, then draw another card

* Pick a coin from your pocket, put it back, then draw another coin

We take repeated samples from a very large population where the individuals are not replaced.
* Randomly select two U.S. Adults and ask if they have ever had a heart attack

We will also be interested in testing whether events are independent in our population. For
example, are the events having diabetes and having heart disease independent in the population.

In this situation we will need to learn ways to test to answer this question.

If the questions asked of individuals in the population are not associated, they are unrelated, then
the resulting events will be independent, otherwise they will be dependent.



Are not independent :-)
ASSUME DEPENDENT:

Repeated Sampling from small populations where
individuals are NOT “replaced”

TEST FOR:

Results from RELATED questions asked of individuals in
the population will result in dependent events
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Dependent events are events which are NOT independent.

In repeated sampling, events will be dependent if individuals are not replaced.

If we have a classroom of 25 students and we randomly select two students. The probabilities will
change.

If we draw a card from a deck and then draw another card, the probabilities are changing.
Technically, this change will occur even for large populations, but we will see that for large
populations, the change is negligible and thus the events will be taken to be “effectively”
independent.

We will look at these calculations soon.

We will be interested in testing to see if two events are associated in the population. The concept of
association between variables in data and the idea of dependent events are closely tied.



IF A and B are INDEPENDENT, THEN (and ONLY THEN)
P(Aand B) = P(A)*P(B) {Rule #6}
Can be used to test for independence by calculating

P(A and B) using logic

P(A) using logic

P(B) using logic

Compare P(A)+P(B) to that found for P(A and B)

If equal then A and B are INDEPENDENT otherwise DEPENDENT
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Probability rule #6 states that IF two events A and B are independent, then (and only then) we have
* P(A and B) = P(A)P(B).

We can multiply the two probabilities P(A) and P(B) to find P(A and B). But ONLY when A and B are
independent events.

This is a very nice property of independent events but as many events are dependent, we cannot
use this rule in just any situation.

If we are not sure whether two events are independent or dependent, we can use this equation as a
test.

We find the three probabilities P(A), P(B), and P(A and B) using logic and then multiply P(A) times
P(B). If the result is equal to the value we found for P(A and B) then the two events are
independent. Otherwise the events are dependent.

Let’s do a few calculations in a scenario where we can assume independence.

Suppose 35% of the US population over age 20 are obese and we select two people completely at
random from the entire US population over age 20.



Suppose 35% of the U.S. population over age 20 are
obese.

If we select two people at random from the U.S.
Population over age 20:

P(Both with be obese) = (0.35) (0.35) = 0.1225

P(Neither will be obese) = (0.65) (0.65) = 0.4225

P(First will be obese but the 2" will not) = (0.35) (0.65) = 0.2275
P(First will not be obese but the 2" will) = (0.65) (0.35) = 0.2275
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What is the probability that both people selected will be obese? Since this is such a large
population and the individuals are chosen completely randomly, the first person’s status will not
have any impact on the 2" person’s status and so we can assume these two events {the first person
is obese} and {the second person is obese} are independent. Therefore we can use the
multiplication rule for independent events.

To find P(Both are obese) we note that this is an “AND” situation. We are trying to find the
probability that the first person is obese AND the second person is obese. Which we can calculate
using the multiplication rule for independent events by

P(1st obese AND 2" obese) = P(1%t obese) P(2"d obese) = (0.35)(0.35) = 0.1225.

Similarly we can find P(neither are obese) as P(15t NOT obese AND 2" NOT obese)
= P(1%t NOT obese) P(2"@ NOT obese) = (0.65)(0.65) = 0.4225

There are also two other possibilities that result from getting one of each.

We can find P(1%t obese AND 2" NOT obese) = P(1%t obese) P(2"d NOT obese) = (0.35)(0.65) = 0.2275
You might wonder if the order matters but you can easily see that so far we have only accounted for
0.7725 by adding the probabilities so far. Thus, we must have more to go! In fact, subtracting from

1, we get 1 -0.7725 = 0.2275!

The last probability is
P(1st NOT obese AND 2" obese) = P(15t NOT obese) P(2"? obese) = (0.65)(0.35) = 0.2275.

This is every possible outcome for picking two people at random from the US population and



recording whether or not the individual is obese.



Age: |Yes | No | Total
P(65+ and YES) = 0.0928 35-44 | 30 | 762 | 792

P(65+) = 0.4608 45-54 | 117 | 992 | 1109
P(YES) = 0.1486 55-64 | 220 | 1428 | 1648

65+ | 611 | 2422 3033
Total | 978 | 5604 | 6582

P(65+)*P(YES) = (0.4608)(0.1486) = 0.0685
#

P(65+ and YES) = 0.0928

= DEPENDENT
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As we mentioned, we can use the multiplication rule for independent events as a test to determine
whether or not two events are independent.

Let’s use our example from age groups and need for special equipment.

We found, using only logic and counting, that

* P(65+ and YES) was 0.0928

e P(65+) was 0.4608 and

* P(YES) was 0.1486

When we multiple P(65+) times P(YES) we get (0.4608) times (0.1486) equals 0.0685.
This is NOT EQUAL to the TRUE value of P(65+ and YES) found by logic of 0.0928.

And so these two events are dependent. We will come back and talk more about what this means
later.

We will see this is only one of a number of ways we can test for independent events.



So far, we have divided by the TOTAL

Sometimes, however, we have additional CONDITIONS
that cause us to alter the denominator (bottom) of our
probability calculation

Given the individual is Age 65+, what is the probability the
individual requires special equipment?

“Conditional” refers to the fact that we have these
additional conditions, restrictions, or other information
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Before we can formalize the definition of independent events, we need to introduce a new type of
probability called conditional probability. It is useful to point out that this is the same as the row
and column percents we learned to calculate in the section on exploratory data analysis in Case C-C.
It would be good to review that material as it will reinforce what we are doing now as well as where
we will be heading in the future.

Notice that every probability we have calculated so far: P(A), P(A and B), P(A or B), has divided by
the overall total. However, if we have additional conditions, this can change the total used in our
denominator (bottom) of our probability calculation.

Suppose, when choosing one person from the CDC data on the need for special equipment vs. age
group that we ask:

Given the individual is Age 65+, what is the probability the individual requires special equipment?
Now, we are restricting our attention to only the 65+ age group.

Before, in our discussion on Case C-C in Unit 1, we would have said:

Among individuals Age 65+, what percent require special equipment?

The question is exactly the same and the only difference in our answer is that we will use decimal
notation as opposed to percentages (unless percentages are specifically requested).

Let’s answer this question.



Given the individual is Age 65+, what is the probability the
individual requires special equipment?

P(YES | 65+)
~Len1
= 3033 .Agt.e:. [Yes | No | Total |
~0.20145 '
3033
|
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The question again is:
Given the individual is Age 65+, what is the probability the individual requires special equipment?

Given the individual is Age 65+ tells us we can restrict our attention to only that row in our table. All
other values have been covered here.

The new total is the total number of individuals who are 65+ which is 3033 and of those, 611
require special equipment. These are the values we need to calculate this probability.

The notation we use for conditional probability is the vertical line.
For this probability, the “given” is 65+ and we want to find the probability of YES.
The notation may seem backwards but we have

P(YES | 65+) which reads the probability of YES given 65+. The event AFTER the vertical line is the
GIVEN and indicates our new DENOMINATOR.

Notice that we just calculated this probability using only logic. We will now introduce a rule for
calculating conditional probabilities.



paand B

P(Bl4) = P42

{Rule #7)

Given the individual is Age 65+, what is the probability the
individual requires special equipment?

P(YES | 65+)
Age: |Yes | No | Total
_ P(vEsand 65+) 35-44 | 30 | 762 | 792
P(65+) 45-54 | 117 | 992 | 1109
611/6582 55-64 || 220 | 1428 | 1648
~ 3033/6582 65+ | 611 | 2422 | 3033
=(0.20145 Total | 978 | 5604 | 6582
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By using logic we simply took a short-cut.

The equation for P(B | A) is P(A and B) divided by P(A). Whatever is GIVEN is still the new
denominator but now we are working with the probabilities instead of the frequencies.

Last time, we found the total number who where 65+ which was our new denominator of 3033 and
then we found how many were 65+ and answered YES for our numerator. This is the same as using
the equation except that we are converting each of those values into probabilities before dividing.

So, when we have data, using the formula is more work. However, if we already knew the needed
probabilities and we did not have the frequencies, the rule allows us to still find the answer.

Here to find P(YES | 65+) we need P(YES and 65+) which is 611/6582 and P(65+) which is
3033/6582.

When we divide P(YES and 65+) by P(65+) we get the same result as before.

You might also notice that mathematically, what happens is that the 6582 in both probabilities
cancel to leave us right back at our previous answer of 611/3033.

One common mistake is dividing by the wrong total. If we are GIVEN 65+, this must be our new
total or denominator. Sometimes students divide by the total of the other event, YES in this case,
possibly due to confusion of the notation or wording. Be careful to divide by whichever event is
GIVEN or KNOWN, not the event for which you are asked to find the probability.
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Given the individual is Age 65+, what is the probability the
individual requires special equipment?

IF the individual selected is Age 65+, what is the
probability the individual requires special equipment?

What is the probability that an individual requires special
equipment AMONG individuals Age 65+.

READ CAREFULLY & UNDERSTAND NOTATION
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We can also reword this question as:
What is the probability the individual requires special equipment given the individual is Age 65+.
We can also use IF or occasionally AMONG to represent the “given” such as

IF the individual selected is Age 65+, what is the probability the individual requires special
equipment?

What is the probability that an individual requires special equipment AMONG individuals Age 65+.
So you must read carefully to determine the exact question being asked.
It is also very helpful to understand the notation of P(A | B) so that you can simplify what you need

to write in order to solve these types of problems while still understanding what you are doing in
the process.
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Tests for Independent Events: Two events A and B are
independent if any one of the following hold:

P(B | A) = P(B)

P(A | B) =P(A)

P(B|A) = P(B | not A)
P(A and B) = P(A) * P(B)
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Now that we have defined conditional probability we can more formally define the concept of
dependent events. Our verbal definition of independent events was: Knowing one event occurs
(translation: GIVEN one event occurs), the probability of the other event stays the same. Thus we
can say, in notation, that A and B are independent events if:

* P(B | A)=P(B). In words this says, given A happens, the probability of B has not changed - it is
the same as P(B) overall.

* Since we could approach it from the other direction we can also say P(A | B) = P(A). In words this
says, given B happens, the probability of A has not changed - it is the same as P(A) overall.

* Another way to think about it is to write: P(B | A) = P(B | not A). In words, given A happens, the
probability of B is the same as if A did NOT happen. And in fact both of these are then equal to
P(B) overall.

Thus we have the following tests for Independent Events: Two events A and B are independent if
any one of the following hold:

P(B | A) =P(B)

P(A | B) = P(A)

P(B | A) =P(B | not A)

P(A and B) = P(A) * P(B)

It is up to you and which is easier for you in a given problem to determine which of these tests to
use. In each case you must find the probabilities needed on each side of the equal sign by logic or a
general equation and be careful not to mistakenly make an assumptions of independence in these
calculations that would invalidate your test.

Then you compare the left hand side to the right hand side of the test equations. If they are equal
then the events are independent, otherwise the events are dependent.
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Age: |Yes | No | Total
35-44 | 30 | 762 | 792
P(YES) = 0.1486 45-54 | 117 | 992 | 1109

(
(
P(65+ and YES) = 0.0928 55-64 1220 } 1428 | 1648
(
(
(

P(65+) = 0.4608

65+ |611 | 2422 3033
P(YES | 65+) = 0.2015 Total | 978 | 5604 | 6582

P(65+ | YES) = 611/978 = 0.6247
P(65+ | NO) = 2422/5604 = 0.4322
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Let’s return to our example.

We have already calculated the first four probabilities listed here. And, we have used the first three
as our first test for independence. We found that P(65+) times P(YES) was 0.0685 which did not
equal P(65+ and YES) which is 0.0928, found by logic and counting.

Now we can look at the tests based upon conditional probability.

We calculated P(YES | 65+) earlier it was about 0.2015. Now we see that we can compare this to
P(YES) which we found earlier to be 0.1486. Since these two values are not equal, we can say the
events 65+ and YES are dependent in our sample.

To find P(65+ | YES) we note that there are 978 total who said YES. This will be our denominator. Of
those 978 who said YES, 611 are 65+. Thus P(65+ | YES) =611/978 or about 0.6247.

We can compare this to P(65+) which is 0.4608 to see that these values are different and thus,
again, we confirm that these two events are dependent.

We could also compare P(65+ | YES) to P(65+ | NO). We can see that there are 5604 total
individuals who answered NO and of those, 2422 are 65+. This gives P(65+ | NO) = 2422/5604 =
0.4322. Comparing this to P(65+ | YES) which was 0.6247 we see that they are not equal and so we
arrive at the same conclusion.

You only need to pick one of these tests. The tests will always give the same answer when
conducted correctly. Choose whichever test seems easiest to you for the given question.
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P(YES) = 978/6582 =0.15
P(YES | 35-44) =30/792 =0.04
P(YES | 45-54) = 117/1109 =0.11
P(YES | 55-64) =220/1658 =0.13
P(YES |65+)  =611/3033 =0.20

Age: | Yes | No | Total
35-44 | 30 | 762 792
45-54 | 117 | 992 1109
55-64 | 220 | 1428 | 1648
65+ 611 | 2422 | 3033
Total | 978 | 5604 | 6582
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Before we discuss the last rule in this unit, let’s talk a little about the application of conditional
probabilities and how this is the same as what we did in Unit 1 relating to row and column
percentages.

What we have here is the prevalence of the need for special equipment
* Overall

* And in each age group.

We can see that overall, around 15% of individuals in our sample required special equipment. You

may notice in the data that the sample size is increasing with age group so we must be extra careful.

We can see, not surprisingly, that among younger individuals we have a lower prevalence of the
need for special equipment. As we increase in age groups, the probability that individuals need
special equipment increases.

For the youngest age group, only 4% require special equipment, this increases to 11% among those
45-54, and 13% among those 55-64. In the 65+ age group, we see that around 20% require special
equipment.

We can see that the overall percentage [of 0.15] falls somewhere between that for the 55-64 and
65+ age groups due to the fact that a vast majority of our sample falls in this [age] range.

Breaking down variables in this way and looking at conditional percentages (now called
probabilities) allows us to investigate the relationship between these two variables and to quantify
the trends that we see.
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For any events A and B

P(Aand B) = P(A)-P(B | A) = P(B)*P(A| B) {Rule #8}
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Probability rule #7 is a simple rearrangement of the definition of conditional probability which gives
* P(AandB)=P(A) *P(B|A)

Since A and B are interchangeable we can also write: P(A and B) = P(B)*P(A | B)

Remember that the given event should also appear as the single event: P(A) with P(B | A).

The letters in the “front” should never agree P(A) doesn’t go with with P(A | B) in this rule.

This rule is useful for calculating the probabilities in repeated sampling for dependent events.
Otherwise, in this course, you can always use logic easier than trying to apply this rule. It will always

work but it is often much more effort than necessary to solve a problem using this rule.

Let’s look at a useful example of applying this rule.
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Suppose 5 out of 8 nurses in a particular unit have a
certain certification

If we select two nurses at random from this unit, what is

P(Both have certification)
= (5/8)(4/7) = 0.357
= P(1st has)*P(2" has | 1t has)
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Suppose that 5 out of 8 nurses in a particular unit have a certain certification. We need two nurses
to handle a situation which will require at least one of the nurses to have this certification. If we
randomly selected the two nurses, what is the probability that we will get, both, none, at least one
nurse with certification.

We can answer these questions using the general multiplication rule but we will see that we don’t
necessarily need to write out the rule, only consider the situation logically. Let’s start with P(Both
have certification). There are 8 total nurses and of them 5 have the certification.

The first time we randomly select a nurse there is a 5/8 probability of selecting a nurse with the
certification. In order to end up with both nurses having certification, it must be that | pick a nurse
with the certification on the first pick and so there are 4 nurses with certification left out of the 7
total nurses left. When | randomly select the next nurse there is a 4/7 probability that | pick a nurse
with certification.

Since this is an “AND” problem. We must have the first with the certification AND the 2" with the
certification we are using a multiplication rule and clearly the probability is changing so the events
are dependent but notice that we didn’t really need to write down the rule to find the answer.

We simply multiply (5/8) times (4/7) to get 0.357. However, for this first question, we did write out
the rule in case it helps you to solve these problems.

We have P(first has the certification) which was 5/8, times P(2"? has the certification | the first had
the certification). It is the given information that lets me say that since the first selected had the
certification, there are only 4 left to choose from who have the certification in my remaining 7
nurses.
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Suppose 5 out of 8 nurses have a certain certification

If we select two nurses at random from this unit, what is

P(Both have certification) = (5/8)(4/7) = 0.357
P(Neither will have certification) = (3/8)(2/7) = 0.107
P(First will but the 2n will not) = (5/8)(3/7) = 0.268
P(First will not but the 2 will) = (3/8)(5/7) = 0.268
P(At least 1 certified) = 1 — P(Neither certified)
=1-0.107
= (.893
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To find P(Neither will have the certification) we see that for my first random selection there are 3
nurses without the certification out of the 8 total. After having selected a nurse without
certification, there are only 2 nurses without certification left of the 7 remaining nurses. So we get
(3/8)*(2/7) = 0.107.

Finally we can calculate the combinations where we have one of each.

If the first does and the second does not. The first time we randomly select a nurse there is a 5/8
chance to have the certification. Having picked a certified nurse, there are still 3 non-certified
nurses remaining of the 7 so that when we randomly select the 2" nurse there is a 3/7 chance of
selecting one which is not certified.

The last probability — where the first is not and the second is certified — is the same answer but the
order of the numerators is reversed.

Thus if we needed to know what is the probability that we would get at least one certified nurse if
we randomly selected two nurses. We can either
* Add the three appropriate probabilities:
P(Both have certification) + P(First does and 2" doesn’t) + P(First doesn’t and 2"? does)
=0.357 + 0.268 + 0.268 = 0.893
* OR, we could recognize that
P(At least 1 certified) = 1 — P(Neither certified) =1 —0.107 = 0.893.

We close with a few comments.
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Unit 3A: Probability
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Conditional probability is very important to both our study of probability and statistics. In practical
situations where we need to compare percentages based upon another categorical variable we are
applying conditional probability, even if we may prefer to consider them to be row and column
percentages.

Independence is also an extremely important concept both in our study of probability and for our
future study of statistics. Testing for independence is an important skill in this Unit.

Notice that all of the problems where we calculated probabilities using the multiplication rules were
situations of repeated sampling. Determining whether such a situation involves independent or
dependent events is the first step. If you aren’t sure then use the general multiplication rule as it will
work in either situation.

Even in this section, with more complex probability rules, you have seen that we present the
solutions logically. The logical solutions simply represent the logic that exists in the rules
themselves, written in probability notation.

Remember that if you can solve the problem using logic, this is often the best approach! Especially
in this course where our goal is to give you a basic understanding of probability and how it might be
applicable in practice.

There is much more to learn about probability than we are able to cover. Our goal is to get back to
statistics as quickly as possible and see how probability ties in with inferential statistics.
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