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01. 00:01 / 00:07 - Quickly we will run through the steps in hypothesis testing here for the two-sample t-test. The
02. 00:07 / 00:11 - hypotheses are similar to what we've discussed before except now we're comparing two groups
03.00:11 / 00:17 - very literally and they're not paired, we cannot reduce them to one sample. So we have
04.00:17 / 00:21 - to contemplate how to compare these two samples. So our null hypothesis is always going to
05. 00:21 / 00:28 - be that the difference between the population means is zero. This is the same as saying

06. 00:28 / 00:34 - that the population mean from group 1 (mu_1) is equal to the population mean from group
07.00:34 / 00:41 - 2 which we call mu_2. The alternative is one of the three common choices which is either
08.00:41 / 00:46 - mu_1 minus mu_2 is different from zero, for two-sided, greater than zero, or less than

09. 00:46 / 00:51 - zero for one sided. For the most part when we carry out entire tests, we are going to

10. 00:51 / 00:58 - stick with the two-sided scenario. That is almost always done in practice. And then we

11. 00:58 / 01:03 - can use our confidence interval to tell us whether we believe that the difference is

12.01:03 / 01:08 - actually positive or negative. But when we initially approach the test, when we set up
13.01:08 / 01:13 - our hypotheses to begin with, it is most common that we will just ask, is there a relationship
14.01:13 / 01:18 - and then after we know there is a relationship, we will go talk a little bit about what we
15.01:18 / 01:25 - see about that relationship. So again the null hypothesis is that mu-1 minus mu_2 is

16.01:26 / 01:31 - zero versus the alternative hypothesis, most often will be that mu_1 minus mu_2 is different
17.01:31/01:37 - from zero, when we conduct the entire test. But we could ask you to set up some hypotheses
18.01:37 / 01:42 - where it is going to be we are interested in greater than or we are interested in less

19.01:42 / 01:47 - than, in that we want to show a specific kind of effect, we want to show our treatment is
20.01:47 / 01:53 - better than the previous treatment. But again in practice most often the p-value that you
21.01:53 / 01:59 - will see reported even for cases where you want to prove one directional hypotheses,
22.01:59/02:06 - you almost always still see the two-tailed hypothesis p-value along with a confidence

23.02:06 / 02:10 - interval that then tells you whether it was greater or less and whether that supported
24.02:10/ 02:17 - your original research question. The null hypothesis can also be thought of as saying there's
25.02:17 / 02:22 - no relationship between our quantitative response variable Y and our categorical explanatory
26.02:22 / 02:29 - variable X. And the alternative hypothesis, when we say not equal to, is that there is

27.02:29 / 02:34 - some relationship between these two variables. So we can always, in all the later modules,
28.02:34 / 02:40 - no matter whether we are in case CQ, CC, or QQ, our hypotheses can almost always be written
29.02:40 / 02:46 - as: there is no relationship between the two variables under study versus there is a relationship
30. 02:46 / 02:50 - between the two variables under study and then it is just the kind of test that we do
31.02:50/ 02:56 - in each of those scenarios. So our next step is going to be to obtain our data, check our
32.02:56 / 03:01 - conditions, and summarize the data. The two-sample t-test can be used as long as the two samples
33.03:01/03:07 - are indeed independent. Be very careful that you are not using two sample methods when
34.03:07 / 03:13 - in fact you have paired data. Ask yourself, is the observation in this group paired with
35.03:13 /03:18 - an observation in the other group? If the answer is yes, this is not the correct test

36.03:18 / 03:24 - to do. And we also have to be in one of the following scenarios based upon whether our
37.03:24 / 03:30 - populations are normal or we have a large enough sample. Very similar to what we discussed
38.03:30/ 03:37 - in our other t-tests earlier. So both populations are normal or more specifically the distribution
39. 03:37 / 03:43 - of the response variable Y in both populations is normal, since sometimes you might think

40. 03:43 / 03:48 - about the populations as people, well people aren't normally distributed, but the response
41.03:48 / 03:54 - that we're measuring on these people is normally distributed. Both samples are random or at
42.03:54 / 03:59 - least can be considered as a random. And in practice checking normality is done the same
43.03:59 / 04:04 - way we've discussed before, looking at histograms, looking at normal probability plots, and then
44, 04:04 / 04:11 - looking for signs of extreme skewness or extreme outliers. If the populations are not normal
45.04:11 / 04:16 - that's not necessarily the end of the road because if our samples are large enough then
46.04:16 / 04:21 - we can really use these methods anyway. So if the populations are known or are discovered
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04:21 / 04:27 - not to be normal but the sample size of the random samples is large enough, in our case

04:27 / 04:31 - we will say if it is greater than 30, it is large enough. In practice the larger the sample

04:31 / 04:36 - the better you're going to be in terms of the results. So once we have looked at our

04:36 / 04:42 - conditions and we've decided that we can proceed, we still have one additional issue with the
04:42 / 04:48 - two-sample t-test. Before we go into these two choices let's first talk about some notation.
04:48 / 04:54 - So we are going to have two populations. Each of those populations we are going to have
04:54 / 04:59 - a sample from that population. So we have two samples. Each of those has a sample size.

04:59 / 05:05 - So we will call those n_1 and 2. Each of those samples also has a sample mean, so we will

05:05 / 05:11 - call that Y_1-bar and Y_2-bar. And each has a sample standard deviation which we will
05:11/05:17 - call s_1 and s_2. And then we'll have one additional notation that we will introduce

05:17 / 05:22 - in a little while, which is the pooled estimate of the population standard deviation which

05:22 / 05:28 - we create whenever we assume that there are equal variances in each of the two populations
05:28 / 05:35 - which is one of our choices. So here are the two cases for our test statistic. In the first

05:36 / 05:42 - case we have the assumption of equal variances. If it is safe to assume that the two populations
05:42 / 05:49 - have equal variances or equal standard deviations then we can pool our estimates of s_1 and
05:50 / 05:55 -'s_2 into some common estimate of the standard deviation. And then we have the following
05:55 / 06:01 - test statistic. We are not going to discuss the details here except that you have access

06:01 / 06:06 - to what the formula is and a little bit of discussion in terms of where it is coming

06:06 / 06:13 - from. So the idea is we're estimating a common population standard deviation, both groups
06:13 / 06:18 - come from populations with the same standard deviation. We have two samples. We want to
06:18 / 06:23 - use those to estimate what we call a pooled estimate of the standard deviation, which

06:23 / 06:30 - is this S_p formula at the bottom. The idea of the test statistic is very similar to what

06:30 / 06:37 - we've done before. On top we have an estimator of our quantity, which is mu_1 minus mu_2.
06:37 / 06:44 - Our estimator is Y_1-bar minus Y_2-bar minus our null value divided by a standard error.

06:44 / 06:48 - So that's what we really want to know about this test statistic, is that it's always going to be our
06:48 / 06:55 - estimator minus our null value divided by our standard error unless we tell you otherwise.
06:56 / 07:01 - There are some tests that aren't formulated this way but at the moment this is what we're
07:01 / 07:05 - looking at in all of the tests that we've seen so far. The second case is the case of

07:05 / 07:10 - unequal variances and this we will use this anytime we have found that it's not safe to

07:10/ 07:16 - assume the two populations have equal standard deviations or equal variances. So we have
07:16 / 07:21 - unequal standard deviations in this case and we use a slightly different t-statistic, but

07:21 /07:27 - it is still the same idea. On top we have an estimator, Y_1-bar minus Y_2-bar minus

07:27 / 07:32 - a null value divided by the standard error. But the standard error is slightly different

07:32 / 07:37 - depending on whether we have equal variances or unequal variances and the reasons for that
07:37 / 07:43 - are more statistically related, more mathematically related, and they're certainly not something
07:43 / 07:48 - that we really need to understand beyond the basic idea. We've already developed that the
07:48 / 07:53 - idea behind hypothesis testing is we find an estimator, we have a null value, and we

07:53 / 08:00 - have a standard error. This gives us how many standard errors away from our null value our
08:00 / 08:06 - data were and then we use that to find a p-value which helps us determine whether what we've
08:06 / 08:12 - seen is rare enough to reject the null hypothesis or not. We won't be calculating any of these
08:12 / 08:17 - test statistics by hand but we will rely on software to obtain the value for us. You should

08:17 / 08:22 - be able to locate the value of the test statistic and the p-value, and the confidence intervals
08:22 / 08:29 - that we discuss, in the output from the software. Again remember all the tests so far that we've
08:29 / 08:35 - discussed all have this form they are the test statistic as the estimator minus the

08:35 / 08:41 - null value all divided by the standard error of the estimator that we're using. In this

08:41 / 08:47 - case the p-value relies on a certain t-distribution. In the case where we can assume equal variances

08:47 / 08:52 - the degrees of freedom are actually fairly simple to calculate, they aren_1 plusn_2

08:52 / 08:58 - minus 2. For the case of unequal variances, the formula for degrees of freedom is more
08:58 / 09:03 - complex and we will rely on software really to obtain the degrees of freedom in both cases
09:03 / 09:07 - and provide us with the correct p-value. But there's always going to be this distribution
09:07 / 09:12 - in the background that we are using to look up our p-values when we conduct hypothesis



98.09:12 / 09:18 - test. The conclusions will be the same as we always have. If the p-value is small then
99. 09:18 / 09:23 - there is a significant difference. In our case this is going to translate into there
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09:23 / 09:30 - is a relationship between our quantitative response variable Y and our categorical explanatory
09:30 / 09:36 - variable X. If the p-value is not small then we don't have enough evidence to reject the

09:36 / 09:42 - null hypothesis. We can also use confidence intervals in this case similar to how we did

09:42 / 09:48 - this in the paired t-test example. If the null value of zero falls outside of the confidence

09:48 / 09:53 - interval, we can reject the null hypothesis. If the null value of zero falls inside the

09:53 / 09:59 - confidence interval, then the null hypothesis is not rejected. So that's the basic process

09:59 / 10:03 - of the t-test. You will see as we go through the remaining material we're going to try

10:03 / 10:08 - to get through the background of these tests very quickly and get into the software to
10:08 / 10:14 - see how do we conduct these tests and what do they mean. So in this case we have to decide
10:14 / 10:19 - whether we believe the variances are equal or not. There is a test for this. You can

10:19/ 10:25 - also just use your common sense and look at the distributions and see if it's reasonable
10:25/ 10:30 - that the variances in the two populations are the same. If it is really ridiculously

10:30/ 10:34 - different, you have a huge variation in one group and a tiny variation in another group,
10:34 / 10:40 - you'll be able to make this decision without any assistance from any hypothesis test. But
10:40 / 10:45 - there is a test called Levine's test for equality of variances and most software packages give
10:45 / 10:52 - the output of this test when you ask for a two-sample t-test. The null hypothesis of

10:52 / 10:58 - this test, the test for equality of variances, is that the standard deviation in group 1

10:58 / 11:05 - is equal to the standard deviation in group 2 versus the alternative hypothesis is that

11:05/ 11:08 - they are different. So you can see that if we have a small p-value then we're going to

11:08 / 11:15 - reject the null hypothesis and conclude that indeed the variances in the two groups, or
11:15/ 11:19 - the standard deviations in the two populations, are different. In that case were going to
11:19/ 11:25 - use case B and have unequal variances. If we fail to reject the null hypothesis here,
11:25/11:31 - we have a large p-value, and then we're going to stick with the assumption of equal variances
11:31/11:36 - unless we have clear evidence from the distributions that we don't believe that. So you can
11:36 / 11:42 - always override this test by your common sense but this is a method and you will generally use
11:42 / 11:48 - this test to decide which of the two t-tests you're going to use. So again, if you reject

11:48 / 11:54 - the null hypothesis for this test you are saying the variances are unequal. If you fail

11:54 / 12:00 - to reject the null hypothesis you are basically unable to say the variances differ so you're
12:00 / 12:04 - going to be left with the best choice which is to go ahead and assume that the variances
12:04 / 12:10 - or equal or reasonably equal. We will look at the output for this when we get into our

12:10/ 12:11 - example in the software.



