COURSE SUMMARY

Putting Everything Together

UF |FL ORIDA

Now, we will give an overview of entire course. We will discuss as many details as possible,
however, we will not be able to review everything in depth.



Probability
Sampling Distributions
Estimates of Probabilities of Interest

Theory of Statistical Inference
The Big Picture

One and Two Variable Research Questions
Exploratory Data Analysis and Inferential Methods
Using Software

Interpret the Results Correctly in Context
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In this course we have a few major goals. We want you to

* Develop your understanding of probability and probability distributions. Including their
application to statistics through:
* The concept of the sampling distribution of our sample statistic.
* and Real-world problems where we are interested in estimating certain
probabilities in our population.

* Develop your understanding of the process of statistical inference using the relatively
simplistic examples of one mean or one proportion — this is the big picture we have
presented.

* Be able to correctly identify the main cases for research questions involving one or two
variables. In each case you:
* Know which exploratory and inferential methods to apply, including non-
parametric alternatives.
* Apply the appropriate standard method in software (or by-hand for the simplest
problems).
* Interpret the results correctly in the context of the problem.
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We have now covered all of the concepts that make up the big picture. Let’s review.
We are interested in learning something about a particular population.

In order to learn about the population, we take a random sample from the population.
From that sample, we produce our data (Step 1).

When we have our data, we conduct exploratory data analysis to obtain some STATISTIC
from our sample. (Step 2)

In our methods we have seen statistics such as p-hat, x-bar, the difference between two
sample means, the sample correlation coefficient (r), and the estimated slope, beta_1-hat.

In each of these cases, the probability “cloud” (Step 3) represents the process of learning
about the BEHAVIOR of our statistic, in particular, we want to know the sampling
distribution of the statistic and its associated standard deviation, which we call the
standard error of the statistic.

Combining the value of the statistic from our data (our estimate) with information about
the sampling distribution of the statistic, we can

* Construct, for example, 95% confidence intervals which, in repeated sampling, will



contain the true value in the population (our parameter) 95% of the time.

* Conduct hypothesis tests about our parameter using the data from our sample. In this
case, we calculate the p-value which tells us the chance we could see a result such as ours
or more extreme by random chance alone —in other words, assuming the null hypothesis
is true, we find the probability that data such as ours or more extreme could have been
produced.

* When this probability is small, it would be very unlikely to obtain results such as
ours or more extreme assuming the null hypothesis is true — and by inductive
reasoning we say that there is evidence to reject the null hypothesis and conclude
that the alternative hypothesis is actually true.

* When this probability is large, it would not be unlikely to obtain results such as
ours or more extreme assuming the null hypothesis is true — and thus we do not
have enough evidence to reject the null hypothesis and we are unable to conclude
the alternative is true. In this case, we have not proven the null hypothesis IS true
we simply have not found any evidence to reject it.

For both confidence intervals and hypothesis tests, the standard error and hence the
sampling distribution are key components.

Without information about the sampling distribution and standard error, we can’t make
inferences about the population of interest.
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Before we begin our data analysis examples, let’s review some details and concepts of
sampling distributions and inference.

In the case of the sample proportion, we found that the distribution of all possible p-hats —
the sampling distribution has a mean equal to the population proportion, p, and a standard
deviation of the square root of p times (1-p) over n. This value is called the standard error
of p-hat and measures the sampling variability of the estimator p-hat.

We also found that the sampling distribution of p-hat is approximately normally distributed
as long as the sample size is large enough relative to the population proportion, p,
specifically we need np and n(1-p) to be at least 10.

Knowledge of the sampling distribution and standard error are the basis of our ability to
determine what range of values of p-hat are likely or unlikely which is the basis for
constructing confidence intervals and conducting hypothesis tests.

Another very important idea is the difference between the parameter and a statistic. The
parameter is the truth in the population whereas the value of our statistic is the estimate of
the population parameter based upon our data.

Our inferential methods use the statistic from our single sample to estimate or test
hypotheses about THE PARAMETER in the population.



It is crucial to realize that the results of any inferential method DO NOT apply to our sample —
we know the EXACT results for our sample so there are no questions to answer about the
sample itself, only about the population from which the sample was taken.
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When we discussed normal probabilities and their applications, we presented these two
equations.

Here X represents a random variable which is normally distributed with mean mu and
standard deviation sigma.

The z represents a z-score giving how many standard deviations is the value of X away from
the mean mu.

The first equation allows us to convert from a known z-score to find the value of X as long
as we know the mean and standard deviation of X.

The second equation calculates the z-score for a particular value of X.

Combining these equations with what we know about the sampling distribution of p-hat
produces the equations we learned for confidence intervals and hypothesis tests.
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The general equation x = mu + z(sigma) provides the basis for the construction of our
confidence intervals, we simply need to substitute the standard deviation of our statistic in
place of the generic standard deviation, sigma, in the general equation.

For example, for 95% confidence, the idea is that we know that we need to go 1.96
standard deviations on either side of our estimate from our data to be 95% confident that
our resulting interval will capture the true population proportion. Knowing an estimate of
the standard deviation of p-hat, we can determine the range of this interval.

If we didn’t know the standard error or we did not know the distribution was normal —
none of this would work!!

For hypothesis tests, we want to measure how many standard deviations away from the
null value is the estimate from our data? We have seen z-scores a few times during the
semester and they always have the same form: In the numerator we have the difference
between “my value for the random variable” and the mean and in the denominator we
have the standard deviation of the random variable under consideration.

In the section on normal random variables we had (x — mu) in the numerator & sigma in the
denominator. It is important to understand the mu we subtract in the numerator and the

sigma in the denominator are the mean and standard deviation of the random variable X.

Thus, for hypothesis tests about the population proportion we can find the z-score by



substituting
* p-hatin place of X (since our random variable is p-hat).

* p_zero, the null value, in place of mu (this is the assumed true population proportion
which would be the mean of our random variable p-hat under our assumption that the
null hypothesis is true).

* And the square root of p_zero times (1-p_zero) over n in place of sigma — since this is the
standard deviation of our random variable p-hat under our assumption that the null
hypothesis is true.

It is possible for someone to apply inferential methods throughout their career and not really
understand these connections and for complex methods it becomes difficult to be able to
put all of these pieces together without the required mathematical background .

However, hopefully you can see that material presented has been building the foundation for
the development and understanding of these equations.

We learned how to summarize our data in exploratory data analysis — including introducing
you to some of the needed ideas for normal probabilities with the discussion of the standard
deviation rule.

Then, after some discussion on sampling and design, we discussed random variables and
normal probabilities so that we could develop the skills needed to find cut-offs for
confidence intervals and p-values of hypothesis tests.

Then we discussed sampling distributions for x-bar and p-hat where we defined and verified
the mean and standard deviation of these statistics and then tried to convince you that they
are approximately normally distributed under certain conditions.

Once we know the sampling distribution is normal and we know the mean and standard
deviation of that normal distribution, we can use this to find the cutoffs for confidence
intervals and the p-values for hypothesis tests.

Notice that the normal distribution is only used for hypothesis tests once we calculate the p-
value using our z-score which is our test statistic. Just because we “name” it z doesn’t make
it normally distributed — a z-score will always measure the number of standard deviations
away but if the original random variable is normal, we can take it the step further and
determine probabilities associated with that z-score.

Not all confidence intervals and hypothesis tests use this “standardized score” approach but
many do which makes this idea a fundamental concept in the development of a wide variety
of statistical methods.
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Similarly, for sample means we developed equations for confidence intervals and
hypothesis tests.

We learned in the section on estimation that if we do not know the true population
standard deviation and instead substitute the sample standard deviation then the
appropriate sampling distribution will be a t-distribution with n-1 degrees of freedom.

In practice we rarely know the true population standard deviation and thus we focused
more on using software to provide the results for confidence intervals and hypothesis tests
for one population mean and focused instead on correctly interpreting the results in
context.

Although we are using a t-distribution instead of the normal distribution, the fundamental
idea behind these methods still relies on the concept of the standard error of the sampling
distribution and standardized values. We simply use the t-distribution instead of the

normal distribution as the basis for determining what range of values are likely or unlikely.

Now we will give examples of each of the main cases covered in the course and an
overview of exploratory and inferential methods.



ONE CATEGORICAL

VARIABLE

We begin with a simple binary categorical variable: Gender in emergency room patients.



Demographic Variabl Freq y | P g
Gender
(. Femal 103 46.8
Exploratory Data Analysis: s wo| s
Age
18-24 years 127 57.7
25-34 years 37 16.8
5t years 2 12y
Gender | Frequency Percent 55 yun ; 127
85 and Above 1 05
Feme 275 61 .1 Edlé;;ll:c; finish high schaol 1 0.5
High school diploma 17 77
Technical school dipl 9 41
Male 175 38 .9 sf,?.]?'gu:;“ plome 127 57.7
College graduate 48 218
Graduate school 18 82
Total 450 100 . 7 | =
§15,001-524,999 28 127
$25,000-539,999 40 18.2
$40,000-849,999 12 56
$50,000 and above 58 264
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In a survey of a random sample of 450 emergency room patients at a certain hospital, 275
were female and 175 were male.

Our raw data consist of a list of 450 observations containing the gender of each patient.
We can summarize this data numerically using a frequency distribution. This table could
also be considered a visual display but we could also create a pie chart or bar chart if
desired.

In practice, we would summarize the results presented in the frequency table in a short
sentence or possibly in a large table containing this type of information for many variables
in the study.

Here is an example of such a table from a different study.

Often, the purpose of this type of one variable analysis will be to give an overall descriptive
summary of the patients in the sample. How well does it represent the population to
which you want your results to apply. The closer your sample matches the population of
interest the less limitations there are in your results.

Here we see that among the 450 patients surveyed 61.1% were female.

Suppose we wanted to determine if there is evidence that the true proportion of female
patients in this ER is different from 50%.



Gender | Frequency Percent
Female 275 61.1
. Male 175 389
Confidence Interval
Total 450 100

0.611(1 — 0.611) ) §
0.611 + 1.96 0 = (0.566,0.656)
9
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When checking the sample size for confidence intervals we check if n(p-hat) and n(1-p-hat)
are both at least 10.

Since both 450(0.611) and 450(1-0.611) are at least 10, we can construct a 95% confidence
interval for the true proportion of females using the equation we presented.

The appropriate confidence multiplier in this case is from a normal distribution due to the
fact that for large enough samples, the distribution of all possible p-hats (the sampling
distribution) will be approximately normally distributed.

This confidence interval consists of our estimate plus or minus our confidence multiplier,
1.96, times the estimated standard error of our statistic.

The resulting interval is 0.566 to 0.656.

Thus, we are 95% confident that between 56.6% and 65.6% of all ER patients at this
hospital are female.

Based upon this confidence interval, since 50% is not a plausible value, we can conclude
that the proportion of females in not 50% in this ER population. In fact, the confidence
interval estimates the true proportion to be greater than 50%.

10
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When checking the sample size for hypothesis tests we check if n(p-zero) and n(1-p-zero)
are both at least 10.

Since 450(0.5) and 450(1-0.5) are at least 10, we can also answer the question using a
hypothesis test with

Ho: p=0.5
Ha: p#0.5

We calculate the test statistic as illustrated giving z = 4.71.

This test statistic, tells us that our p-hat is 4.71 standard errors above the hypothesized
value. This is extremely unlikely for a normally distributed quantity.

The p-value is basically zero for such a large z-score under the normal curve and thus there
is enough evidence to conclude that the true proportion of female patients in this ER is not
equal to 50%.

Remember that the p-value is the probability of obtaining a result as or more extreme than
our data —in the direction (or directions) of our alternative hypothesis ASSUMING THE
NULL HYPOTHESIS IS TRUE.

11



Suppose Sample Size =100, of which 61 are Female

Hypothesis Test 0.61 — 0.5
Ho:p=0.5 T T
Ha: p#0.5

P-value
=2(0.0139)
=0.0278
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For a little better practice, let’s suppose we had similar evidence from a smaller sample
size.

What if we took a random sample of 100 where 61 patients are female.
Then the test statistic would be Z = 2.2.

Since our alternative hypothesis is two-sided, to find the p-value we need to calculate the
area both above 2.2 and below -2.2.

Our p-value is 2(0.0139) = 0.0278 which is less than 0.05 and thus we reject the null
hypothesis.

There is enough evidence to conclude that the true proportion of all patients in this ER who
are female is not equal to 50%.

Notice that when we conduct hypothesis tests in practice they are usually two-sided. Most
definitely the only one-sided tests which should be conducted are ones for which you know
BEFORE you collect your data that you wish to prove ONLY one direction.

Sometimes this is the case — we want to prove our drug results in weight loss — or we want
to prove our treatment increases red blood cell counts.

12



The main point is that you CANNOT change your hypotheses to a one-sided test AFTER you
see your data. In this instance we cannot decide after seeing that 61% were female in our
sample to change our desired alternative hypothesis to > instead of simply #.

Be sure to state your hypotheses based upon what is provided in the scenario NOT based
upon the information you are provided about the sample.

Also notice that a disadvantage of conducting a one-sided test is that if it turns ours that the
truth is the opposite of what you desire to show, your test will not be designed to discover
that information and this is certainly one reason that the standard practice is to conduct two-
sided tests followed by confidence intervals for the estimation of any effects of interest.

Before moving on, notice that since we rejected the null hypothesis we could have made a
Type | error in this case. To describe this error in context we could say:

* ltis possible that we could have concluded the true proportion of females is different
from 0.5 when in fact it is equal to 0.5.

12



Your Hypothesis Test
Ho:p=05
Ha:p>0.5

Your Friend’s Hypothesis Test
Ho:p=0.5
Ha:p<0.5
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To review the p-value calculation for one-sided tests we will consider a simple example of
tests about the fairness of a coin.

Suppose you have a lucky coin that you believe lands on heads more often than tails.
Then your hypotheses would be

Ho: p=0.5
Ha:p>0.5

Suppose your friend, who has seen you use this coin on numerous occasions, thinks you
are crazy and if anything your so-called “lucky” coin lands on tails more often than heads!

Then your friend’s hypotheses would be

Ho: p=0.5
Ha:p<0.5

Since it is your lucky coin, it is decided to allow you to flip it 100 times.
You do and you get 48 heads on 100 tosses.

Now, it is fairly clear that based upon the results of this sample, there is no evidence that p



> 0.5, in other words, we expect to find a very large p-value for that alternative hypothesis.
There is some anecdotal evidence to support your friend’s claim that p < 0.5 but we will need
to take into account the sampling variability in 100 tosses of a fair coin to assess if this is

enough evidence to support your friend’s claim.

Let’s calculate the p-value for each test using this sample to illustrate the process.

13



Your Alternative: Ha: p > 0.5
P-value = 0.6554

Your Friend’s Alternative: Ha: p < 0.5
P-value = 0.3446

UF [FLORIDA

Since your alternative hypothesis was “greater than” —the p-value for your test finds the
probability of obtaining a z-score such as that in the data or larger — as these are the values
that are “as or more extreme” in the direction of the alternative.

Your p-value is the area to the right of -0.4 which is 0.6554.

Your friend’s alternative hypothesis was “less than” — the p-value of this test finds the
probability of obtaining a z-score such as that in the data or smaller — as these are the
values that are “as or more extreme” in the direct of the alternative.

Your friend’s p-value is the area to the left of -0.4 which is 0.3446.

In both cases, there is not enough evidence to reject the null hypothesis. We didn’t need
to know the p-value to know this was the case for your test but for your friends, we needed
to know how rare this value was in order to determine if there was evidence to support the

claim that p < 0.5.

If you and your friend had decided prior to collecting your data to simply test the two-sided
alternative, the p-value for this test would have been 2(0.3446)

It could be that the coin really is fair! But ... then again maybe not.

We aren’t able to prove the null hypotheses we only know this data does not give us

14



evidence to reject it ... in either direction.

In this case, since we failed to reject the null hypothesis, it could be that we have made a
Type Il error. In context we could say:

For your test: It is possible that we concluded the true proportion of heads on this coin is
not greater than 50% when in fact it is! (this would make you happy)

For your friend’s test: It is possible that we concluded the true proportion of heads on this
coin is not less than 50% when in fact it is.

Two-sided test: It is possible that we concluded the true proportion of heads on this coin is
not different from 50% when in fact it is different from 50%.

14
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Let’s take this opportunity to review the binomial distribution and use our ability to
calculate binomial probabilities to look at the “what if’s” of this situation.

We will illustrate the calculations under the null hypothesis visually and then present a full
set of results for discussion.

We will go back to using a binomial distribution to calculate probabilities using n = 100 and
p = our current guess at the truth.

Under the null hypothesis, we assume p = 0.5. Now we calculate three probabilities

* P(X=48)
*« P(X2>48)
*« P(X<48)

In this particular case where we assume p = 0.5, the last two probabilities are the exact p-
values of your test and your friend’s test respectively. We applied the exact distribution
instead of approximating it by an appropriate normal distribution.

Here we find that if the coin was exactly fair, there is a 7.4% chance we could obtain 48
heads out of 100 tosses. There would be a 38.2% chance of getting 48 heads or less and a
69.1% chance of getting 48 heads or more.

15



Notice these last two probabilities do not add to 100% as they both contain P(X = 48).

Now we will start assuming other values for the truth which are not the null hypothesis. The
guestion is, how large or small does the true proportion have to be before it becomes very
unlikely that this would happen.

This may help you see how all of this fits together and help you understand a little more
about how we calculate type Il errors and power.

Although the probabilities we will calculate are not directly related to either type Il error or
power, they will be calculated through a similar process — by assuming a value for the truth
and then calculating probabilities based upon that assumption.

15



Truth P(X=48) P(X 248) P(X £48)

0.45 0.066 0,307 0.760

0.46 0.074 0.381 0.693

0.47 0.078 0.459 0.619

0.48 0.080 0.539 0.540

0.49 0.078 0.618 0.460

05 0.074 0.691 0382

0.51 0.067 0.758 0.308

0.52 0.058 0.816 0.242

0.53 0.048 0.865 0.184

0.54 0.039 0.904 0.135

0.55 0.030 0.934 0.096

0.56 0.022 0.956 0.066

0.57 0.016 0.972 0.044

0.58 0.011 0.983 0,028

0.59 0.007 0.990 0.017

0.6 0.004 0.994 0.010

0.61 0.003 0.997 0.006

UNIVERSITY of
UF FLORIDA!

| didn’t use the applet for these calculations as it would have taken quite a while. | used an
EXCEL formula BINOMDIST and the ability to “fill down” to obtain this table very quickly.

The row in bold represents the probabilities we calculated on the previous slide where we
assumed the null hypothesis is true.

If we look at the P(X = 48), we see that it is the largest when the coin’s true percentage is
0.48, as we would expect. It is fairly likely to happen if the true value was 45% through
about 52 or 53% but it does not become extremely rare as an individual outcome until we
get to true values approaching 60%.

For example, if the coin were 60% heads, there would only be a 0.4% chance we could ever
see 48 heads in 100 tosses of the coin.

Considering it from your perspective — it is your lucky coin after all, in order to really
investigate how rare this would be, we should consider the P(X < 48).

Looking in that column, we see that if the true probability of heads is 55%, overall there is
still a 13.5% chance of getting 48 heads or lower in 100 tosses. Not very rare!

If the true probability is 57% that probability drops to 0.044 which is somewhat rare.

When the true probability is 60% there is a 1% chance of getting 48 heads or less in 100

16



tosses.

So, since we found a sample with X = 48 for this coin, we can see from this table that there
are numerous values of p for which we could easily have seen our result.

Besides being a quick review of the binomial distribution, the final conclusion of this example
is:

Just because we fail to reject the null hypothesis, doesn’t mean the null hypothesis is true.
In this case with 48 heads in 100 tosses, p could easily be 0.55 based upon the results in this
table.

In fact the 95% confidence interval would range from 0.382 to 0.578. Which says that any
value between 0.382 and 0.578 is a plausible value for the true probability of heads on this
coin.

You could still be correct about your lucky coin — but so could your friend! More data would
be needed to settle this argument.

16



ONE QUANTITATIVE

VARIABLE

AND TESTS FOR PAIRED SAMPLES

Now let’s review methods for one quantitative variable.

We will use an example which will result in a paired t-test regarding the labor force
participation rate for women in the 60’s and 70’s.

17
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The labor force participation rate (LFPR) is the proportion of individuals in a particular
population who are currently working.

This graph (from http://en.wikipedia.org/wiki/Labor force) shows:

In the center as a black line — the labor force participation rate for all US adults.
On the top —as a light blue line — the labor force participation rate for US men.
On the bottom —as a pink line — the labor force participation rate for US women.

There was a clear increasing trend among women and a decreasing trend among men over
most of the period.

We are going to investigate data containing the labor force participation rate for women in
19 cities for two years, 1968 and 1972.

18



P(participate in labor force | female)

City LFPR72 | LFPR68 City LFPR72 | LFPR68
NY.| 0.45 0.42 Wash., D.c.| 0.52 0.42
LA.| 0.50 0.50 Cinn.| 0.53 0.51
Chicago| 0.52 0.52 Baltimore| 0.57 0.49
Philadelphia| 0.45 0.45 Newark| 0.53 0.54
Detroit| 0.46 0.43 Minn/St. Paul| 0.59 0.50
San Francisco| 0.55 0.55 Buffalo| 0.64 0.58
Boston| 0.60 0.45 Houston| 0.50 0.49
pitt.| 0.49 0.34 Patterson| 0.57 0.56
st. Louis| 0.35 0.45 Dallas| 0.64 0.63

Connecticut| 0.55 0.54

UF [FLORIDA

Here is the raw data which comes from the data and story library.
(http://lib.stat.cmu.edu/DASL/Stories/WomenintheLaborForce.html)

Each pair represents the results for the listed city with the first value from 1972 and the
second from 1968.

We will begin by summarizing the results in 1968 and 1972 individually.
In the data, the values corresponding to the min and max for each year are underlined.

You can see that the minimum in each year came from a different city. The maximum value
in 1972 occurred twice and one of these cities — Dallas — was the maximum in both years.

Although not completely crucial to this problem. | will point out that these particular
measures — the labor force participation rates — are actually estimates of a probability. In
this case, we have a conditional probability. The labor force participation rate among
women can be restated as the probability of a person participating in the labor force given
the person is female.

We could write this in symbols as P(participate in labor force | female)

| point this out mainly to illustrate that there are many applications of the concepts of
probability that we discussed hidden in real-world problems in a wide variety of disciplines.
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Lower Upper
Variable | Minimum | Quartile | Median | Quartile | Maximum

LFPR72 0.350 0.490 0.530 0.570 0.640
LFPR68 0.340 0.450 0.500 0.540 0.630

Lower 95% | Upper 95%
Variable | Mean | Std Dev | CL for Mean | CL for Mean

LFPR72 0.527 0.071 0.493 0.561
LFPR68 0.493 0.068 0.460 0.526
UNIVERSITY of
UF FLORIDA

Here we have the SAS output summarizing the labor force participation rate for these two
years.

We can see that in 1972 all of the values for the 5-numbary summary are larger in 1972
than 1968 indicating an overall increase in this measure between these two years.

The mean LFPR in 1972 was 0.527 whereas in 1968 it was 0.493. Soon we will determine if
this difference is statistically significant.

The variation within each year is similar as the range is exactly the same in both years, the
standard deviation is similar (0.071 in 1972 and 0.068 in 1968), and the IQR is also similar
(0.57 -0.49 =0.08 in 1972 and 0.54 — 0.45 = 0.09 in 1968).

When we calculate 95% confidence intervals for each year, the intervals have significant
overlap. For independent samples, unless the overlap is small, this usually indicates that
the difference will not be statistically significant in the corresponding t-test.

However, in the case of paired samples, such as in this data, we cannot base our conclusion
on results which assume independent samples. We are interested specifically in the trend
within each city. Overall, is there a change in the LFPR values?

20
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Before conducting the paired t-test, let’s look at a few additional types exploratory data
analysis.

On the left we have the SPSS results for a histogram and normal QQ-plot of the LFPR values
for 1968.

On the right we have the same results using SAS for 1972.

For both years, there seems to be one low outlier but in general the distributions are
reasonably normally distributed.

The histograms, give us a good overall picture of how the values of the variables are
distributed for this sample of cities.

The normal QQ-plots are mostly used to investigate the validity of normality assumptions
required by inferential methods you wish to use. For the moment, we aren’t particularly

concerned with the normality but we can see that both are approximately normal.

For the moment, it is difficult to make any comparisons based upon the histograms,
especially when taken from two different packages.

In addition, in order to answer our question, we need to consider the pairing.
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In the boxplots, from SPSS, we can see that the minimum in 1968 (which was Pittsburg with
0.34) is not considered an outlier whereas in 1978, the minimum is an outlier (this was St.
Louis with 0.35)
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City LFPR72 [LFPR68 | Diff City LFPR72 [LFPR68 | Diff

Ny 0.45 0.42 | 0.03 Wash,, D.c.| 0.52 0.42 |0.10

La.| 0.50 0.50 0 cinn.| 0.53 0.51 |0.02

Chicago| 0.52 0.52 0 Baltimore| 0.57 049 |0.08

Philadelphia| 0.45 0.45 0 Newark| 0.53 0.54 |-0.01

Detroit| 0.46 043 |0.03 Minn/st. Paul| 0.59 0.50 | 0.09

San Francisco| 0.55 0.55 | 0.00 Buffalo| 0.64 0.58 | 0.06

Boston| 0.60 045 |0.15 Houston| 0.50 049 |0.01

pitt.| 0.49 034 [0.15 Patterson| 0.57 0.56 | 0.01

st. Louis| 0.35 045 | -0.1 Dallas| 0.64 0.63 |0.01
Connecticut| 0.55 0.54 | 0.01

UF FLORIDA

To begin our paired analysis, we can calculate the differences for each city.

You can see that most values are positive with a few negative and some with no

measurable change.
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Ho:uy =0
Ha: py #0

between 1972 and 1968.

Mean

95%
CL Mean

Std Dev

95%
CL Std Dev

0.0337

0.00489 | 0.0625 0.0597 | 0.0451

0.0883

One-Sample Test

DF | t Value | Pr > ||

18

246 | 00244

Where 4 = population mean of the difference in labor
force participation rates among women for US cities

Test Value =

0

Sig. (2-tailed)

Mean

95%
Confidence ...

95%
Confidence ...

Difference

Lower

Upper

Difference in LFPR (1972
2458 18

.024

03368

.0049

.0625

- 1968)

UF [FLORIDA

Although researchers may be interested in showing an increase, in keeping with the most
common analysis in practice we will conduct a two-sided test.

Our hypotheses will be that mu-sub-d = 0 for the null hypothesis and mu-sub-d # 0 for the
alternative.

It is important to understand exactly what the symbolic parameters in your hypotheses
mean in context.

In this case, we can define mu-sub-d to be the population mean of the difference in labor
force participation rates among women for US cities between 1972 and 1968.

We have a small sample (n = 19) so we will need to investigate the normality assumption.

We will be using the sample standard deviation as we do not know the population standard
deviation of the differences under study — thus we will be conducting a t-test.

In particular, we are conducting the paired t-test, however, this is the same process as a
one-sample t-test except that usually the mean difference specified in the null hypothesis

for a paired t-test is zero whereas for a one-sample t-test the null value is not usually zero.

Partial output for both packages is provided. We find
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* A test statistic of t = 2.46 from SAS and 2.458 from SPSS
* A p-value of 0.0244 from SAS and 0.024 from SPSS
* The degrees of freedom are stated to be 18 indicating that n is 19 (as it should be)

Since the p-value is less than 0.05, we can reject the null hypothesis. We can say:

There is enough evidence to conclude that the population mean of the difference in labor
force participation rates among women for US cities between 1972 and 1968 is not zero.

Although that interpretation is completely accurate, it may be re-worded for easier
understanding as:

There was a statistically significant change in the population mean labor force
participation rate among women for US cities between 1968 and 1972.

Now let’s investigate the change:

e The estimated mean difference is 0.0337 from SAS and 0.03368 from SPSS
* The 95% confidence interval rounded to three decimal places is (0.005, 0.0625)

We can interpret this by saying:
Based upon our data, we estimate that the population mean labor force participation rate

among women for US cities increased by 0.034 between 1968 and 1972. The 95%
confidence interval suggests this value could be as low as 0.005 to as high as 0.0625.

Or we could simply say:

We are 95% confident that the population mean labor force participation rate among
women for US cities increased by between 0.005 to 0.0625 from 1968 to 1972.

Remember that both our confidence intervals and hypothesis tests are about the population
NOT our current sample — we know exactly what happened in our sample.

As always, it is possible that we have made an error.

For this hypothesis test, we could have claimed there was a change in the population mean
labor force participation rate when in fact there was not which would be a Type | error.

And for the confidence interval, similarly, it is possible that it does not contain the true value.

We know that if we repeated this process, 95% of the time, the interval we obtain from this
process would capture the target value but we cannot know if our current interval from
0.005 to 0.065 contains the true mean or not!
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ignificances are displayed. The fi e level is .05,
1Exact significance is displayed for this test UF.

SAS does a better job than SPSS of providing details that help to validate the assumptions.
In SPSS you would need to analyze the differences yourself where in SAS we obtain these
graphs automatically upon conducting a paired t-test.

We can see that the distribution of the differences is somewhat not normal, however for
such a small sample size, this would not be unexpected coming from a normal population.

It would be reasonable to apply the paired t-test.
If you are concerned, you could also apply the sign test and the Wilcoxon signed-rank test.

Both were applied in SAS and SPSS and both are statistically significant lending support to
our conclusion of a statistically significant change.

You might notice that the p-value for the signed-rank test is different in SAS and SPSS. SAS
uses the exact p-value where SPSS uses an asymptotic approach — which for small sample
sizes may not be very accurate. There may be a way to find the exact p-value in SPSS but it
wasn’t a direct option that | could find.
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CASE C-Q

(or Case Q-C: for association)

In Case C-Q we covered three main scenarios.
The first is the paired t-test which we have already reviewed.

The remaining methods are for two independent samples or for more than two
independent samples.

These methods for independent samples can also be used in Case Q-C to show an
association between the two variables but they will not allow us to predict a categorical
outcome from a quantitative predictor as may be desired in Case Q-C.
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TWO INDEPENDENT
SAMPLES

Case C-Q

We will be begin with an example comparing two groups.

27



ID Forward/Backward Side to Side Age Ho: HE — py =0
1 21 14 Elderly
2 17 28 Elderly Ha: pe —py # 0
3 24 21 Elderly
4 27 42 Elderly
5 24 26 Elderly
6 24 35 Elderly
7 29 23 Elderly
8 18 34 Elderly
9 31 17 Elderly
1 19 15 Young
2 16 14 Young
3 17 10 Young
4 10 7 Young
5 28 19 Young
6 30 13 Young
7 22 16 Young
8 14 10 Young
UNIVERSITY of
UF |FLORIDA|

Data Reference: http://lib.stat.cmu.edu/DASL/Stories/MaintainingBalance.html

Is age related to the ability maintain balance while concentrating? The data comes from the
data and story library. The data we will use was simulated to be similar to, but without
some of the problems of, the original data.

Nine elderly and eight young subjects participated in this experiment.

Each subject stood barefoot on a "force platform" and was asked to maintain a stable
upright position and to react as quickly as possible to an unpredictable noise by pressing a
hand held button. The noise came randomly and the subject concentrated on reacting as
quickly as possible.

The platform automatically measured how much each subject swayed in millimeters in
both the forward/backward and the side-to-side directions.

These are two independent samples but we also have two different response variables to
analyze:

* Forward to Backward Sway Range and

* Side to Side Sway Range

In each case our null hypotheses will be that the difference in the population mean sway
range between elderly and young is zero and our alternative will be that this difference will
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not be equal to zero.
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Std. Error
Age Group N Mean Std. Deviation Mean
Forward to Backward Elderty 9 | 2389 4702 1.567
Sway Range (mm) Young 8 19.50 6.845 2420
Side to Side Sway Range _ Elderty 9 | 2667 9.083 3.028
(mm) Young 8 13.00 3.854 1.363

UNIVERSITY of

FLORIDA|

UF

Here are the summaries produced by SPSS for both sway ranges.

Notice in SPSS the output lists elderly and then young. This indicates that the SPSS output
that follows will be estimating mu-sub_Elderly minus mu-sub-Young.



Forward to Backward Sway Range (mm)

T T
Young Elderly

Age Group

UF [FLORIDA

Now, boxplots for forward to backward sway range from SPSS. There seems to be some
difference in the variation but, as this is a very small sample size, possibly this could be due
to chance.

It does seem that the mean and median forward to backward sway range for elderly
individuals is larger than that for young individuals but again, the sample size is small.
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Here is the output from SAS when conducting the two-sample t-test.

Both distributions seem reasonably normal comparing the densities (solid vs. dotted line)
on these histograms. We also see the boxplots again, in this case horizontally, under the
histograms. There are no outliers in the data.
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Forward to Backward Sway Range
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These are the QQ-plots from SAS which also show no reason for concern regarding the
normality assumption.
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95%
Age Method Mean | 95% CL Mean |Std Dev| CL Std Dev

Young 19.5000 | 13.7772 | 25.2228 6.8452 | 4.5259 | 13.9319
Elderly 23.8889 | 20.2744 | 27.5034 47022 |3.1762 | 9.0084
Diff (1-2) | Pooled -4.3889 | -10.3977 | 1.6199 I 5.8017 | 4.2857 | 8.9792
Diff (1-2) | Satterthwaite | -4.3889 | -10.6586 | 1.8808

Method Variances DF |t Value | Pr > [t|

Pooled Equal 15 -156 | 0.1404

Satterthwaite | Unequal 12.222 -1.52] 01534

Equality of Variances
Method |Num DF | Den DF | F Value [ Pr >F

Folded F 7 8 212 ] 03144

-104<Y-E <162 -E-104<Y<E+1.62

UF [FLORIDA

Now we move into the output for the Two-sample T-test on forward to backward sway
range between young and elderly patients.

Notice in SAS the output lists young and then elderly. This indicates that the SAS output
will be estimating mu-sub_Young minus mu-sub-Elderly.

For SAS we begin by looking for the p-value of the test for equality of variances, which is
0.3144, outlined in the lower right of this output.

Thus we fail to reject the null hypothesis that the variances are equal and so we can use the
equal variances row in the tables, also outlined.

We find a p-value for the equal variances two sample t-test of 0.1404 and so there is not
enough evidence to conclude that the population mean forward to backward sway range

differs between young and elderly individuals.

The appropriate 95% confidence interval for the difference between the population mean
for young and that for elderly is given as -10.4 to 1.62.

We can interpret our estimate and confidence interval as follows.

Based upon this study, we estimate that the mean forward to backward sway range for
young individuals is 4.4 mm less than that for elderly individuals. However, the 95%
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confidence interval indicates that the mean for young individuals could be as much as 10.4
mm less to as much as 1.62 mm MORE than that for elderly individuals.

Plausible values for the true mean difference (young — elderly) range from large negative

values to small positive values and include the possibility that the true mean difference could
be zero.
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Levene's Test for Equality of
Variances Age Group |

Forward to Backward Elderty

Sway Range (mm)

Young

F Sig. Side to Side Sway Range  Elderly
Forward to Backward Equal variances assumed

I Il (mm) Young
Sway Range (mm) 1.383 258

Equal variances not
assumed

t-test for Equality of Means

t df Sig. (2-tailed)
Forward to Backward Equal vanances assumed
Sway Range (mm) 1.957 15 140
qual varniances nol
1.522 12222 153

assumed

t-test for Equality of Means

95% Confidence Interval of the
Mean Std. Error Difference
Difference Difference Lower Upper
Forward to Backward Equal variances assumed
S Range (mm) I 4.389 2819 -1.620 10.398
Equal variances not
assumned 4.389 2.883 -1.881 10.659
A162<E-Y <104 Y-162<E<Y+104  UF|HORIGA

In SPSS, we have the reverse order for our comparison, elderly — young. So our test
statistic, mean difference, and confidence interval values are all reversed. Otherwise, the
results are equivalent.

For SPSS we begin by looking for the p-value of the test for equality of variances, which is
0.258, outlined in the right column of the first table of this output. Notice the p-value is
different from SAS and indeed the test used by SPSS may be preferred as it is less sensitive
to outliers and departures from normality. It is possible that SAS users and SPSS users may
get different results for this test and thus choose a different row for their t-test.

In this case we get the same conclusion as for SAS by failing to reject the null hypothesis
that the variances are equal and so we would still use the equal variances row in the tables
outlined in the output.

We find a p-value for the equal variances two sample t-test of 0.140 and so there is not
enough evidence to conclude that the population mean forward to backward sway range

differs between elderly and young and individuals.

The appropriate 95% confidence interval for the difference between the population mean
for elderly and that for young is given as -1.62 to 10.4.

We can interpret our estimate and confidence interval as follows.
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Based upon this study, we estimate that the mean forward to backward sway range for
elderly individuals is 4.4 mm greater than that for young individuals. However, the 95%
confidence interval indicates that the mean for elderly individuals could be as much as 1.62
mm less than to as much as 10.4 mm more than that for young individuals.

Plausible values for the true mean difference (elderly — young) range from small negative
values to large positive values and include the possibility that the true mean difference could
be zero.
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Now for Side to Side Sway Range.

The boxplots show a much larger difference in variation with the distribution of young
individuals having a much smaller spread than that for elderly individuals.

It does seem a more obvious difference exists for side-to-side sway.

Elderly individuals tend to have larger side to side sway than young individuals.
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Here is the output from SAS when conducting the two-sample t-test.

Both distributions seem reasonably normal comparing the densities (solid vs. dotted line)
on these histograms. We also see the boxplots and there are no outliers in the data.
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These are the QQ-plots from SAS which also show no reason for concern regarding the
normality assumption.



95%
Age Method Mean | 95% CL Mean |Std Dev| CL StdDev

Young 13.0000 | 97776 [16.2224 | 38545 [2.5485 | 78440
Elderly 26.6667 | 19.6849 [33.6482 | 9.0830 |6.1351 | 17.4000
Diff (1-2) | Pooled -13.6667 | -21.0582 | 62751 | 7.1368 | 5.2720 | 11.0455
Diff (1-2) | Satterthwaite | -13.6667 | -209703 | -6.3631 | |

Method Variances DF |t Value | Pr > [t|

Pooled Equal 15 -394 0.0013

Satterthwaite | Unequal 11.052 412 0.0017

Equality of Variances
Method |Num DF | Den DF | F Value | Pr > F
Folded F 8 7 5.55 J| 0.0358

UF [FLORIDA

In the SAS output, we begin by looking for the p-value of the test for equality of variances,
which is 0.0358.

Thus here we do reject the null hypothesis that the variances are equal and so we can NOT
use the equal variances row in the tables, we should instead use the unequal variances row
outlined in the output.

We find a p-value for the unequal variances two sample t-test of 0.0017 and so there is
enough evidence to conclude that the population mean side to side sway range differs
between young and elderly individuals.

The appropriate 95% confidence interval for the difference between the population mean
for young and that for elderly is given as -20.97 to -6.36.

We can interpret our estimate and confidence interval as follows.

Based upon this study, we estimate that the mean side to side sway range for young
individuals is 13.7 mm less than that for elderly individuals. However, the 95% confidence
interval indicates that the mean for young individuals could be as little as 6.36 mm to as
much as 20.97 mm less than that for elderly individuals.

Plausible values for the true mean difference (young — elderly) are all negative and hence
zero is not a plausible value.
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Levene's Test for Equality of
Variances

F Sig.
Side to Side Sway Range  Equal variances assumed

Equal variances not
assumed

t-test for Equality of Means

t df Sig. (2-tailed)

Side to Side Sway Range  Equal variances assumed

(mm) 3.941 15 .001

Equal variances not
assumed

4116 11.052 .002

t-test for Equality of Means

95% Confidence Interval of the
Mean Std. Error Difference
Difference Difference Lower Upper
(SIfme)lo Side Sway Range Equal variances assumed 13.667 3,468 6.275 21,058
Equal variances not
assumed 13.667 3.320 6.363 20.970 I|

UNIVERSITY of

FLORIDA|

UF

Once again the results in SPSS are reversed and yet reveal the same conclusion. We begin
by looking for the p-value of the test for equality of variances, which is 0.043.

Thus here we do reject the null hypothesis that the variances are equal and so we can NOT
use the equal variances row in the tables, we should use the unequal variances row -
outlined in the output.

We find a p-value for the unequal variances two sample t-test of 0.002 and so there is
enough evidence to conclude that the population mean side to side sway range differs
between young and elderly individuals.

The appropriate 95% confidence interval for the difference between the population mean
for elderly and that for young is given as 6.36 to 20.97.

We can interpret our estimate and confidence interval as follows.

Based upon this study, we estimate that the mean side to side sway range for elderly
individuals is 13.7 mm more than that for young individuals. However, the 95% confidence
interval indicates that the mean for elderly individuals could be as little as 6.36 mm to as
much as 20.97 mm more than that for young individuals.

Plausible values for the true mean difference (elderly — young) are all positive and hence
zero is not a plausible value.
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Non-Parametric Tests

Hypothesis Test Summary
Null Hypothesis Test Sig. Decision
The distribution of Forward to Independent- -

1 Backward Sway Range (mm) is Samples 1 391 E&tlam the
the same across categories of Age Mann-Whitney hvpothesis
Group. U Test ypo :
The distribution of Side to Side ~|ndependent- Reject the

; Samples 1

2 Sway Range (mm) is the same M Whitn .001 nul

across categories of Age Group. Ugl'r:e';-t ey hypothesis.

Asymptotic significances are displayed. The significance level is .05.
! Exact significance is displayed for this test.

UF FLORIDA

We would get the same conclusions from the non-parametric Wilcoxon Rank-Sum test. The
SPSS results are shown here with a p-value for forward to backward of 0.139 and one for
side to side of 0.001.
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‘Wilcoxon Scores (Rank Sums) for Variable f b Wilcoxon Scores (Rank Sums) for Variables_s
Classified by Variable Age Classified by Variable Age
Sum of | Expected | Std Dev Mean Sum of | Expected | Std Dev| Mean
Age N| Scores | Under HO [ Under HO Score Age N | Scores | Under HO | Under HO Score
Elderly 9 96.50 81.0 | 10.360417 | 10.722222 Elderly 9 11250 81.0 | 10.379561 | 12.50000
Young 8| 5650 72.0 | 10.360417 | 7.062500 Young 8| 4050 72.0 | 10379561 | 5.06250
Average scores were used for ties. Average scores were used for ties.
Wilcoxon Two-Sample Test Wilcoxon Two-Sample Test
Statistic 56.5000 Statistic 40.5000
Normal Approximation Normal Approximation
Z -1.4478 z -2.9866
One-Sided Pr < Z 0.0738 One-Sided Pr< Z 0.0014
Two-Sided Pr > |Z| [ 0.1477 Two-Sided Pr > Z| 0.0028
t Approximation t Approximation
One-Sided Pr< Z 0.0835 One-Sided Pr< Z 0.0044
Two-Sided Pr>[Z| || 01670 Two-Sided Pr > [Z| 0.0087
Z includes a continuity Z includes a continuity
correction of 0.5. correction of 0.5.
UF |FL ORIDA

The SAS results are more complex. The two-sided p-values for either the Z or t
approximation are acceptable.

For forward to backward on the left, we find a p-value of 0.1477 for the Z or 0.1670 for the
t.

And for side to side on the right, we find a p-value of 0.0028 for the Z or 0.0087 for the t.

Finally, for our test involving forward to backward sway range, since we failed to reject the
null hypothesis, it is possible that we could have made a type Il error.

In context we would not conclude that there is a difference in the mean forward to
backward sway when in fact there is a difference.

And for our test involving side to side sway range, since we rejected the null hypothesis, it
is possible that we could have made a type | error.

In context we would conclude that there is a difference in the mean side to side sway when
in fact there is NOT a difference.



MORE THAN TWO
INDEPENDENT SAMPLES

Case C-Q

Now we will look quickly at an example of ANOVA.
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Data: Hot Dogs
Type Calories Sodium
Beef 186 495
Beef 181 477
Meat 190 545
Meat 147 360
Poultry 87 359
Poultry 144 545
UF |FLORIDA

Data: http://lib.stat.cmu.edu/DASL/Stories/Hotdogs.html

In our previous section on Case C-Q, we discussed an example regarding the calories and
sodium content of hot dogs.

We have two different response variables (calories and sodium) and we wish to compare
beef, poultry, and other “meat” hot dogs.



Calories Sodium

dat
Type Type

Calories
1
dl
8

UF [FLORIDA

Here are the SPSS boxplots for calories by hot dog type on the left and sodium by hot dog
type on the right.

For calories, it seems clear that poultry hot dogs tend to be lower in calories but there is
not much difference between Beef and Meat for calories. The variation in calories is similar
for all types.

For sodium, there is no clear difference. There is one low outlier for type = meat.
The variation in sodium content is not as consistent between the three types as for calories

— however, neither is there a clear indication of a large difference in variation between
these groups.
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QQ-Plots: Beef

Calories Sodium

Normal Q-Q Plot of Calories Normal @-Q Plot of Sodium
for Type= Beef for Type= Beef

Expected Normal

1 0 0 0 180 M
Observed Value Observed Value

UF |FL ORIDA

The QQ-plots for Beef show no major problems.



QQ-Plots: Meat

Calories

Normal @-Q Plot of Calories
for Type= Meat

Expected Normal

1% o 140 B % B
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Expected Normal

Sodium

Normal Q-Q Plot of Sodium
for Type= Meat

T T
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UF FLORIDA

The QQ-plots for meat for both variables are not too bad but the one for sodium does

show a fairly unusual outlier — as we saw in the boxplots.
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QQ-Plots: Poultry

Calories Sodium

Normal Q-Q Plot of Calories. Normal Q-Q Plot of Sodium

for Type= Poultry for Type= Poultry

Expected Normal
9
Expected Normal

Observed Value Observed Value

UF |FL ORIDA

The QQ-plots for poultry show no major problems.

Overall, the normality assumption seems reasonable for these responses within our hot
dog type groups.



ANOVA

Sum of
Squares df Mean Square F Sig
Calories  Between Groups 17692.195 2 8846.098 16.074 I .000
Within Groups 28067.138 51 550.336
Total 45759.333 53
Sodium Between Groups 31738.715 2 15869.357 1.778 A79
Within Groups 455248.785 51 8926.447
Total 486987.500 53

Hypothesis Test Summary

Null Hypothesis Test Sig. Decision
yp g
The distribution of Calories is the 'S"g;p?:gem' Reject the
1 same across categories of KrusEal Wallis m null
TypeCode. Test 2 hypothesis.

P P Independent- i
The distribution of Sodium is the Retain the
2 same across categories of gﬁf;ﬂlszﬂ"ls null
TypeCode. Test hypothesis.

Asymptotic significances are displayed. The significance level is 05.

UNIVERSITY of

FLORIDA|

UF

The results from SPSS for both the standard ANOVA and the Kruskal-Wallis test are
provided here for both variables.

For calories both the ANOVA and Kruskal-Wallis test have p-values of 0.000 and thus we
reject the null hypothesis.

There are statistically significant differences in mean calorie count between these three hot
dog types. Although no formal test was conducted, based upon the boxplots, it seems
clear that the mean calories for poultry hot dogs is different from (and in fact lower than)
both beef and other meat hot dogs. However, the boxplots for the other two groups are
extremely similar and thus are not likely to be found to have different means.

For sodium, however, both the ANOVA and Kruskal-Wallis test have p-values over 0.05. For
the ANOVA we have a p-value of 0.179. For the Kruskal-Wallis test, we have a p-value of
0.095. In either case, we fail to reject the null hypothesis and find no evidence of any
differences in the population mean sodium content between these three hot dog types.
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R
SAS - ANOVA

Sum of
Source DF Squares | Mean Square | F Value | Pr >F
Model 21769219510 8846.09755 16.07 | <.0001
Error 51 | 28067.13824 550.33604

Corrected Total | 53 |45759.33333

Sum of
Source DF Squares | Mean Square | F Value | Pr > F
Model 2| 317387147 15869.3574 1.78 § 0.1793
Error 51| 455248.7853 8926.4468

Corrected Total | 53 | 4869875000

UF FLORIDA

In SAS we have the same results for the standard ANOVA.



Boxplots

Calories

Sodium

Wilcoxon Scores (Rank Sums) for Variable Calories
Classified by Variable Type

‘Wilcoxon Scores (Rank Sums) for Variable Sodium
Classified by Variable Type

Sum of | Expected | StdDev| Mean Sum of | Expected | StdDev| Mean
Type N| Scores | Under HO | Under HO Score Type N| Scores | Under HO | Under HO Score
Beef 20 675.50 550.00 | 55.809023 |33.775000 Beef 20 441.00 550.00 | 55.819666 | 22.050000
Meat 17| 57750 467.50 | 53.675400 | 33.970588 Meat 17| 47850 46750 | 53.685635 |28.147059
Poultry 17 232.00 467.50 | 53.675400 |13.647059 Poultry 17 565.50 467.50 | 53.685635 | 33.264706
Average scores were used for ties. Average scores were used for ties.
Kruskal-Wallis Test Kruskal-Wallis Test
Chi-Square 19.2514 Chi-Square 4.7128
DF 2 DF 2
Pr > Chi-Square || <.0001 Pr > Chi-Square | 0.0948

UF FLORIDA

And for the Kruskal-Wallis test.
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Boxplots

Calories Sodium
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These boxplots are provided by SAS with the ANOVA analysis. They provide the p-value for
the F-test and illustrate the mean as well as the median for comparison.



CASE C-C

Original Data: http://bolt.mph.ufl.edu/2012/12/23/learn-by-doing-case-c-c-software/

When we discussed exploratory data analysis for Case C-C, we used a dataset based on a
1999 study at the University of Pennsylvania and Children’s Hospital of Philadelphia, in
which parents were surveyed about the lighting conditions under which their children slept
between birth and age 2 (lamp, night-light, or no light) and whether or not their children
developed nearsightedness (myopia). The purpose of the study was to explore the effect of
a young child’s nighttime exposure to light on later nearsightedness.

Notice this is an observational study which does not control for any other possible lurking
variables.
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Data: Nightlight

0
NO

|Obs |__Anylight | Light | Nearsightedness
NO

.- NO LIGHT
n YES NIGHT LIGHT
n YES LAMP
n NO NO LIGHT
ﬂ NO NO LIGHT
n YES NIGHT LIGHT
YES LAMP
n YES NIGHT LIGHT
“ NO NO LIGHT
m YES NIGHT LIGHT

NO
NO
NO
NO
YES
NO
YES
NO
YES

UF [FLORIDA

Here is a few lines of the data.

Notice the variable values are not coded.

We have added a new variable called Anylight which is NO for children with no light and

YES for children with a lamp or night light.
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The FREQ Procedure
Statistics for Table of Light by Nearsightedness
Frequency Table of Light by Nearsightedness
E ted Statisti DF | Val Prob
P::l'):e‘;: Nearsightedness - 1stie — i =
BomEst Light No|  VES| Total| [ChiSquare 2| 578363 | <0001 ||
Col Pct a1 . . \ - _
LAMP 1 a -5 Likelihood Ratio Chi-Square 2[61.5396 | <.0001
53549 | 21451 Mantel-Haenszel Chi-Square | 1 [57.5460 | <.0001
7.10 8.56 15.66
45.33 54.67 Phi Coefficient 0.3475
9.94 29.93
Contingency Coefficient 0.3282
NIGHT LIGHT 153 79 232
165.65 66.355 Cramer's V 0.3475
31.94 16.49 4843
65.95 34.05
4474 57.66
Fisher's Exact Test
NO LIGHT 155 17 172
122.81 49.194 Table Probability (P) | 5.551E-16
32.36 3.55 35.91
2012 988 Pr<=P 4.262E-14
4532 1241
Total 342 137 479 Sample Size =479
71.40 28.60 100.00
UF [FLORIDA

To investigate the association between type of light and nearsightedness, using the original
three level light variable, we can conduct a chi-squared test or fisher’s exact test.

The null hypothesis is that there is no relationship between the type of light and future
nearsightedness in other words, that type of light and future nearsightedness are
independent.

The alternative hypothesis is that there IS a relationship between the type of light and
future nearsightedness in other words, that type of light and future nearsightedness are
dependent.

In SAS, the values in each cell are in the following order — specified in the “legend” in the
upper left corner of the table. Frequency, Expected Count, Overall Percent, Row Percent,
Column Percent

Using the row percentages, our contingency table shows that among children with no light,
9.88% developed nearsightedness, among children with a nightlight, 34.05% developed
nearsightedness and among children with a lamp, 54.67% developed nearsightedness.

Without using any inferential statistics, this difference seems extreme. And, in fact, the p-
value of both the chi-square test (given as < 0.0001) and Fisher’s exact test (which gives a
tiny probability of 4.3x107(-14)) show an extremely highly significant result.
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Thus we can reject the null hypothesis.

We conclude that there is enough evidence of an association between the type of light at

night and the future development of nearsightedness in the population. Type of light used at
night and development of nearsightedness are dependent.
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Chi-Square Tests

Asymp. Sig. Exact Sig. (2
sided)

Value df (2-sided)
Pearson Chi-Square 57.836° 2|0 000 I .000
Likelihood Ratio 61.540 2 .000 .000
Fishers Exact Test | 61016 | —
N of Valid Cases 479

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 21.45.

Nearsightedness
NO YES Total
Light LAMP Count 34 a1 75
Expected Count 535 215 75.0
9% within Light 453% | 547% | 100.0%
9% within Nearsightedness 09% | 299% 157%
% of Total 7.1% 86% | 157%
NIGHT LIGHT ~ Count 153 79 232
Expected Count 165.6 66.4 2320
% within Light 659% | 34.1% | 1000%
% within Nearsightedness |, 7o | s7.7% | 48.a%
% of Total 31.9% 16.5% | 48.4%
NO LIGHT Count 155 17 172
Expected Count 1228 492 172.0
% within Light 90.1% 99% | 100.0%
% within Nearsightedness | j5g0 | 124% | 35.9%
% of Total 32.4% 35% | 359%
Total Count 342 137 479
Expected Count 3420 1370 4790
% within Light 714% | 286% | 100.0%
% within Nearsightedness
1000% | 1000% | 1000%
UNIVERSITY of
% of Tolal 71.4% 28.6% 100.0% FLORIDA

The SPSS output gives exactly the same information. The only difference is the order that
the cell values are presented.

In SAS the values were Frequency, Expected Count, Overall Percent, Row Percent, Column
Percent.

In SPSS they are given as Count — which is the frequency, expected count, then % within
light which is the ROW percent, then % within nearsightedness which is the column
percent, with the overall percent being provided last.

Understanding the output provided by your software is important now and most definitely
in practice.

The p-value of the appropriate chi-square test and Fisher’s exact test are outlined in the
table and are reported to be 0.000 which doesn’t mean the p-value is exactly equal to zero

but it is zero rounded to three decimal places.

Again, our conclusion is that there is a highly statistically significant association between
type of light and nearsightedness.
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Chi-Square Tests

Asymp. Sig Exact Sig. (2- | Exact Sig. (1-
Value df (2-sided) sided) sided)
Pearson Chi-Square 46.041° 1 000 000 000
Continuity Correction® | 44,622 1
Likelihood Ratio 51.605 1 .000 000
Fisher's Exact Test I .000 I 000
N of Valid Cases 479

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 49.19
b. Computed only for a 2x2 table

Nearsightedness
NO YES Total
anyight NO__ Count 155 17 172
Expected Count 1228 492 | 1720
% within anylight 901% |  99% | 1000%
% within Nearsightedness 453% | 124% | 35.9%
% of Total 324% |  35% | 35.9%
YES  Count 187 120 307
Expected Count 2192 878 | 3070
% within anylight 609% | 391% | 1000%
% within Nearsightedness 54.7% 87.6% 64.1%
% of Total 390% | 251% | 64.1%
Total Count 242 137 479
Expected Count 3420 | 1370 | 4790
% within anylight 714% | 286% | 1000%
% within Nearsightedness | 6 0o, | 100.0% | 100.0%
% of Total 714% | 286% | 1000% W‘UNIVERSITY of

To investigate the association between the variable anylight and nearsightedness we can
conduct a chi-squared test with a continuity correction or fisher’s exact test.

The null hypothesis is that there is no relationship between whether or not the child slept
with any light and future nearsightedness in other words, exposure to light during sleep
and future nearsightedness are independent.

The alternative hypothesis is that there IS a relationship between whether or not the child
slept with any light and future nearsightedness in other words, exposure to light during
sleep and future nearsightedness are dependent.

Using the row percentages, our contingency table shows that among children with no light,
9.88% developed nearsightedness whereas among children with a nightlight or lamp,
39.09% developed nearsightedness.

In SPSS, the p-value of both the continuity adjusted chi-square test and Fisher’s exact test
are given as 0.000 giving an extremely highly significant result.

Thus we can reject the null hypothesis.
We conclude that there is enough evidence of an association between whether or not the

child slept with any light and the future development of nearsightedness in the population.
Exposure to light during sleep and future nearsightedness are dependent.
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Statistics for Table of anylight by Nearsightedness

Statistic DF | Value| Prob
Chi-Square 1 [46.0412 | <0001
Likelihood Ratio Chi-Square | 1 |51.6049 | <.0001
Continvity Adj. Chi-Square 1 |44.6222| <.0001
I-‘reque:;:y Table of anylight by Nearsightedness Mantel-Haenszel Chi-Square | 1 |45.9451 | <0001
Expect "
Percent Nearsightedness Phi Coefficient 0.3100
lé::vPI;:t anylight NO YES Total Contingency Coefficient 0.2961
NO 155 17 172 Cramer's V 0.3100
12281 49.194
3236 3.55 3501
90.12 9.88
45.32 1241 Fisher's Exact Test
YES 187 120 307 Cell (1.1) Frequen: 155
21919  87.806 (L) EreqReney ()
39.04 25.05 6409 Left-sided Pr <=F 1.0000
60.91 39.00 = =
54.68 87.59 Right-sided Pr >=F 8.754E-13
Total 342 137 479
71.40 28.60 100.00 =
. Table Probability () | 7.304E-13
Two-sided Pr <=P 1.314E-12

Sample Size = 479

UF [FLORIDA

The only difference between the SAS output and SPSS output is in the reporting of the p-
values.

In SAS, the p-value of the continuity adjusted chi-square test is given as < 0.0001 and for
Fisher’s exact test it is given as 1.3x107(-12).

Both of these are extremely small and so we would again reject the null hypothesis.



CASE Q-Q

Dataset information:

http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/state.html

For case Q-Q, we will use a dataset containing information about U.S. states during the
1970’s.
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Obs | State Population | Income | llliteracy | Life_Exp | Murder | HS_Grad | Frost | Area
Alabama 3615 3624 |21 69.05 [15.1 [41.3 20 |50708
Alaska 365 6315 |1.5 69.31 [11.3 |66.7 152 | 566432
Arizona 2212 4530 |1.8 70.55 |7.8 58.1 15 [ 113417
Arkansas 2110 3378 |1.9 70.66 |10.1 |39.9 65 [51945
California 21198 5114 |11 71.71 |10.3 |62.6 20 [156361
Colorado 2541 4884 0.7 72.06 |6.8 63.9 166 | 103766
Connecticut [ 3100 5348 [ 1.1 7248 |31 56 139 | 4862

UNIVERSITY of

FLORIDA|

UF

A few lines of the data are shown here.

The variables are:

* state name

* Population

e per-capitaincome

* illiteracy rate

* life expectancy

e Murder and non-negligent manslaughter rate per 100,000 population

e Percent high school graduates

e Mean number of days with the minimum temperature below freezing in capital or large
city

And the

¢ Land area in square miles.

In particular we will investigate the associations between murder, frost, and illiteracy.
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Facts on US States in 1970’s
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This is a scatterplot matrix from SPSS showing the scatterplots of all possible pairings
between the variables murder, frost, and illiteracy.



Facts on US States in 1970’s

Scatter Plot Matrix
Murder Frost Illiteracy

o, B
P
e

Frost

Tiiteracy

T mom se 0% » %udid

UF |FL ORIDA

And a similar scatterplot matrix from SAS.

None of these scatterplots show any clear non-linear trends although there may be some
outliers.
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Here we have individual scatterplots with LOESS curves for
Murder vs. frost (on the left)

Murder vs. illiteracy (center)

Illiteracy vs. frost (right)

Of the three plots, the murder vs. illiteracy scatterplot in the center shows the most linear
trend followed by illiteracy vs. frost (on the right) and finally murder vs. frost (on the left).

Although the plot for murder vs. frost (on the left) may be truly non-linear, we will
investigate all three of these relationships further using correlation and regression.

From these plots we would expect a negative correlation between murder and frost (on the
left) and between illiteracy and frost (on the right)

And a positive correlation between murder and illiteracy.
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Pearson Correlation Coefficients, N =50
Prob > |r| under HO: Rho=0

Murder Prtg Illlteraﬁ
Murder 1.00000 -0.53888 0.70298
Murder and non-negligent manslaughter rate per 100,000 population (1976) <.0001 <.0001
Frost -0.53888 1.00000 -0.67195
Mean #-days with minimum temperature below freezing (1931-1960) <.0001 <0001
mitel'acy 0.70298 -0.67195 1.00000
Tlliteracy (1970, percent of population) <0001 <0001

Spearman Correlation Coefficients, N =50
Prob > |r| under H0: Rho=0

Murder Illiteracg
Murder 1.00000 -0.54384 0.67236
Murder and non-negligent manslaughter rate per 100,000 population (1976) <.0001 <.0001
Frost -0.54384 1.00000 -0.68319
Mean #-days with mini p below freezing (1931-1960) <0001 <0001
Tlliteracy 0.67236 -0.68319 1.00000
Illiteracy (1970, percent of population) <.0001 <.0001

UNIVERSITY of

FLORIDA|

UF

First we have the SAS output for both Pearson’s and Spearman’s correlation between all
combinations.

The results are all highly statistically significant.

For Murder vs. Frost, Pearson’s correlation is -0.539 and Spearman’s is -0.544. Both
indicating a moderately strong negative linear association between murder and frost. As
the mean number of days below freezing increases, the murder rate tends to decrease.
For Murder vs. llliteracy, Pearson’s correlation is 0.703 and Spearman’s is 0.672. Both
indicating a somewhat strong positive linear association between murder and illiteracy. As
the illiteracy rate increases, the murder rate tends to increase.

For Frost vs. llliteracy, Pearson’s correlation is -0.672 and Spearman’s is -0.683. Both
indicating a somewhat strong negative linear association between frost and illiteracy. As

the mean number of days below freezing increases, the illiteracy rate tends to decrease.

These values confirm what we found in the previous scatterplots.
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Facts on US States in 1970’s

Correlations
Murder and
non-negligent
manslaughter | Mean #-days
with minimum
lliteracy temperature
(1970, percent below freezing
of population) L (9311960)
lliteracy (1970, percentof  Pearson Correlation 1 3 672"
popuiation) Sig. (2-tailed) 000
N 50 50
Murder and non-negligent _ Pearson Correlation 703" 539"
manslaughter rate per .
100,000 population (1976)  S'9- (2-tailed) 000 ‘000
N 50 50 50
Mean #-days with Pearson Correlation 672" -539" 1
minimum temperature " .
ing (1931 Sig. (2-tailed) 000 .000
1960) N 50 50 50

**. Correlation is significant at the 0.01 level (2-tailed).

UF FLORIDA

We find the same results for Pearson’s correlation in SPSS.
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s
Facts on US States in 1970’s

Correlations
Murder and
non-negligent
manslaughter | Mean #-days
rate per with minimum
Illiteracy 100,000 temperature
(1970, percent population below freezing
of population) =
Spearman'srho  llliteracy (1970, percentof  Correlation Coefficient 1.000 672" -683"
population) Sig. (2-tailed) . 000 000
N 50 50 50
- o3 - _—
Murder and non-negligent  Correlation Coefficient 672 1.000 544
manslaughter rate per .
100,000 population (1976)  ©'9- (2-1ailed) 000 : 000
N 50 50
Mean #-days with Correlation Coeflicient 683" -544" 1.000
minimum temperature N .
below freezing (1931— Sig. (2-tailed) .000 1000 )
1960) N 50 50 50

UF |FL ORIDA

And for Spearman’s correlation. The only difference is in the order the variables are

presented.

65



Analysis of Variance

Sum of Mean
Source DF | Squares| Square |F Value |Pr>F

19391028 | 193.91028 19.64 | <.0001

-

Model

Error 48 | 473.83552 9.87157

Corrected Total | 49 | 66774580

Root MSE 3.14191 | R-Square|| 02904 ||

Dependent Mean | 7.37800 | Adj R-Sq | 0.2756

Coeff Var 4258479
Parameter Estimates
—T
95%
Parameter | Standard Confidence
Variable | Label DF|| Estimate Error | t Value [ Pr > [t| Limits
Intercept | Intercept 1 11.37569 1.00549 11.31 | <.0001 | 9.35401 | 13.39737
Frost Mean #-days with minimum temperature below 1 -0.03827 0.00863 -4.43 | <.0001 | -0.05563 | -0.02091
freezing (1931-1960)

UNIVERSITY of

FLORIDA|

UF

Now we can continue with simple linear regression.
Values of particular interest are outlined.

We have an R-squared of 0.2904 indicating that 29% of the variation in murder rate can be
explained by the mean number of days below freezing.

The slope is statistically significant with a p-value <0.0001.

The linear regression equation is: Predicted Murder Rate = 11.38 — 0.038(Frost).

The 95% confidence interval for the slope is -0.056 to -0.021.

We can interpret the slope and it’s confidence interval by saying: For each 1 day increase in
the mean number of days with minimum temperature below freezing, the average murder

rate decreases by 0.038. The 95% confidence interval suggests this decrease could be as
little as 0.021 to as much as 0.056.
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Murder vs. Frost

Model Summary®
Adjusted R Std. Error of
Model R Square the Estimate
1 539° 290 276 3.14191
ANOVA?
Sum of

Model Squares dr Mean Square F Sig
1 Regression 193.910 1 193910 19.643 1000°

Residual 473.836 48 9.872

Total 667.746 49

Coefficients”
Standardized
izad Coefficients Coefficients 95.0% Confidence Interval for B

Model B Std. Error Beta 1 Sig. Lower Bound Upper Bound
1 (Constant) 11.376 1.005 11.314 .000 9.354 13.397

Mean #-days with

minimum temperature

below freezing (1931— -.038 009 -539 -4.432 .000 -.056 -.021 I

1960)

UF FLORIDA

The results from SPSS are exactly the same except for differences in rounding.
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Fit Diagnostics for Murder
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In SAS we obtain the following diagnostic plots and a fit plot by default when conducting a
regression analysis.

We need to verify that the relationship is reasonably linear, which we have here.

We need to check that the residuals are approximately normally distributed. Looking at the
QQ-plot and histogram of the residuals, the normality assumption seems completely
reasonable.

We need to check the assumption of constant variance. From the plot of the residuals by
the predicted values, there is no clear violation of this assumption. The points are relatively
evenly distributed with similar spread around the horizontal line at zero over the range of
predicted values. We could also look at the scatterplot of the data to see that the constant
variance assumption is reasonable.

We haven’t learned about all of the graphs displayed here by SAS but if you go onto a
regression course you will learn more about some of these plots and measures.
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Analysis of Variance

Sum of Mean
Source DF | Squares | Square |F Value |Pr>F

329.98270 | 329.98270 46.89 | <0001

-

Model
Error 48 [ 337.76310 7.03673

Corrected Total | 49 | 667.74580

Root MSE 2.65268 | R-Squaref| 0.4942
Dependent Mean | 7.37800 | Adj R-Sq | 0.4836
Coeff Var 35.95397

Parameter Estimates

[ =—
95%
Parameter = Standard Confidence
Variable | Label DF | Estimate Error |t Value | Pr > [t| Limits
Intercept | Intercept 1 2.39678 0.81844 293 | 0.0052 | 0.75118 | 4.04237
]]literacy Illiteracy (1970, percent of population) 1 4.25746 0.62171 6.85 | <.0001 | 3.00742 | 5.50750

UF [FLORIDA

For murder vs. illiteracy, we have an R-squared of 0.4942 indicating that 49% of the
variation in murder rate can be explained by illiteracy.

The slope is statistically significant with a p-value <0.0001.
The linear regression equation is: Predicted Murder Rate = 2.40 + 4.26(llliteracy).
The 95% confidence interval for the slope is 3.007 to 5.508.

We can interpret the slope and it’s confidence interval by saying: For each 1 percentage
point increase in the illiteracy rate, the average murder rate increases by 4.26. The 95%

confidence interval suggests this increase could be as little as 3.007 to as much as 5.508.
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Normal P-P Plot of Regression Standardized Residual

Dependent Variable: Murder and non-negligent manslaughter rate per 100,000
population (1976)

Dependent Variable: Murder and non-negligent manslaughter rate per 100,000
population (1976)
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Here we use the SPSS versions of the needed graphs to validate assumptions.
Linearity is reasonable from the scatterplot.

The histogram and normal probability plot indicate normality is reasonable. In regression,
SPSS gives a PP-plot instead of a QQ-plot but these graphs are identical in what we expect
to see and how they are interpreted and can be used interchangeably.

Finally the plot of the residuals by the predicted values shows no major issues although
there does seem to be a slight decrease in the spread as the predicted value increases, this
could be driven by two odd points in the scatterplot — one high value on the left side which
is unusually far from the line and one on the right side corresponding to the largest x-value
as if we ignore those two points, what remains seems to better satisfy the constant
variance assumption.
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Model Summary“

AdjustedR | Sta. Error of
Model R R Square Square the Estimate
1 672° 452 440 45610
ANOVA?
Sum of
Squares df Mean Square F Sig
LLiodc -
1 Regression 8.220 1 8.220 39513 .000
Residual 9.985 48 208
Total 18.205 49
Coefficients®
Standardized
Unstandardized Coefficients Coefficients 95.0% Confidence Interval for B
| hodel B Std. Error Beta t Sig. Lower Bound Upper Bound
1 (Constant) 1993 146 13.655 .000 1.700 2287
Mean #-days with
minimum temperature
below freezing (1931— -.008 .001 -.672 -6.286 .000 -010 -.005
1960)

UNIVERSITY of

FLORIDA|
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Finally for illiteracy vs. frost, we have an R-squared of 0.452 indicating that 45% of the
variation in illiteracy can be explained by frost.

The slope is statistically significant with a p-value reported as 0.000.

The linear regression equation is: Predicted Percent llliteracy = 1.993 — 0.008(Frost).

The 95% confidence interval for the slope is -0.010 to -0.005.

We can interpret the slope and it’s confidence interval by saying: For each 1 day increase in
the mean number of days with minimum temperature below freezing, the average illiteracy

percentage decreases by 0.008. The 95% confidence interval suggests this decrease could
be as little as 0.005 to as much as 0.01.




Fit Diagnostics for Iliteracy
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In this case, linearity is reasonably.

The residuals are reasonably normally distributed based upon the QQ-plot and histogram
of the residuals.

However, in this case, there does seem to be a strange pattern in the residual vs. predicted
values plot and the original scatterplot. The residuals vs. predicted values shows an
increasing spread as the predicted value increases. The scatterplot shows a similar trend in
that as the variable Frost increases, the variation around the regression line seems to be
decreasing. Thus there is some concern about the validity of the constant variance
assumption.
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Cautions about Cause

Murder is associated with Frost

Murder is associated with llliteracy

llliteracy is associated with Frost

UF [FLORIDA

Although we found associations in each of these three regression models, we must be
careful about concluding the relationship is causal.

The first relationship found as the mean number of days with minimum temperature below
freezing increases, the murder rate decreases but we CANNOT say that more days below
freezing CAUSES the murder rate to decrease.

In the second relationship we see that as the illiteracy percentage increases, the murder
rate also increases but again we CANNOT say that higher illiteracy percentage CAUSES the
murder rate to increase.

The fact that illiteracy and frost are also related in the third relationship shows that when
considering the relationship between murder and frost, we must be aware that illiteracy is
also related to both frost and murder and thus illiteracy is a potential lurking variable in this
relationship between murder and frost.

In general, unless you have performed a randomized controlled experiment, you should
always be cautious about claiming a direct causal link between the explanatory and
response variables in any analysis!
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SUMMARY

Now, let’s summarize the standard methods presented in the course.
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Response

Explanatory

Categorical Quantitative
c->C c-=>Q
To Visualize To Visualize
2-Way Table Side-by-side Boxplots
Outcome A|Outcome B | Outcome C d
Group 1 [ P
Group 2 QIJ -ﬁ
Categorical Group 3

Numerical Summary
Conditional Percentages

Formal Inference

group1 group 2 group 3

Numerical Summary
Descriptive Statistics

Formal Inference

Chi-Square test for Independance 2 independant samples:

Two-Sample t-test

2 dependant samples:
Paired t-test

> 2 independant samples:
ANOVA

> 2 dependant samples:
Not covered in the course
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When both our explanatory variable and response variable are categorical, we visualize the
results using a two-way table and summarize the data numerically using conditional
percentages to compare the distribution of the response variable within the levels of the
explanatory variable. We used a chi-square test as the standard method and Fisher’s exact
test as the non-parametric alternative. Remember to use the continuity adjusted p-value
for the special case when we have a 2x2 table — when both our explanatory variable and
our response variable have only two levels.

When our explanatory variable is categorical and our response is quantitative, we visualize
the data using side-by-side boxplots and numerically summarize using measures such as
the sample mean, standard deviation and 5-number summary.

The inferential methods depend upon whether the categorical explanatory variable has two
levels or more than two levels and whether the samples are dependent or independent.

For dependent samples, we only considered the case where the explanatory variable has
two levels and in this case we can apply the paired t-test and estimate the population mean
difference using a confidence interval. The non-parametric alternatives are the sign test
and the Wilcoxon signed-rank test.

For independent samples, when the explanatory variable has two levels, we can apply the
two-sample t-test as our standard method and estimate the difference in the population
means using a confidence interval. The non-parametric alternative is the Wilcoxon rank-
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sum test which can also be called the Mann-Whitney U test.

For independent samples where the explanatory variable has more than two levels, the
standard method is ANOVA and the non-parametric alternative is the Kruskal-Wallis test.

75



Response

Categorical Quantitative
Q-=>C Q->Q
Logistic Regression To Visualize
Not covered in this course Scatterplot

Quantitative

Explanatory
Response

Explanatory

Numerical Summaries
Correlation Coefficient

Formal Inference
Regression line.

Significance test for the linear rela-
tionship (t-test for the slope).
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When the explanatory variable is quantitative and the response is categorical, we have not
learned any formal methods of inference, however, we have mentioned numerous times
that you can still apply the methods in Case C-Q in order to determine if there is an
association. Logistic regression is the formal approach to the task of predicting a
categorical outcome from a quantitative predictor.

When both the explanatory and response variables are quantitative, we visualize the
relationship with a scatterplot and if the relationship is linear we can summarize
numerically with the correlation. The inferential methods in this case are tests about the
correlation coefficient and the slope of the linear regression equation.

In the case of non-linear relationships which are still either increasing or decreasing, we
discussed one non-parametric method — Spearman’s rank correlation — which can be used
to measure the strength and direction of the relationship and can be tested for significance.

For each of our inferential methods, it is also very important to know the conditions under
which the test can be applied. We reviewed that information in the examples but didn’t
restate those details in this summary.
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77

COURSE SUMMARY

Putting Everything Together

UF FLORIDA

Now that we have reached the end of the course, we hope you feel you have learned a lot
about using statistics in practice in situations involving one or two variables.

We also hope that you have an understanding of and appreciation for the process of
statistical inference and how probability plays an important role behind the scenes.
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