General SAS Skills and Knowledge:

- SAS Windows (Program, Log, Output, Results, Explorer)
- SAS Menus (Open files, Submit files, View windows)
- Clearing SAS Windows (Log and Output)
- Creating and using a SAS library
- Working with SAS datasets in a library
- Working with SAS datasets in the work directory
- Viewing the contents of a SAS dataset using PROC CONTENTS

```
proc contents data=bio.whas500;
run;
proc contents data=bio.whas500 varnum;
ods select position;
run;
```

• Viewing the contents of a SAS dataset using PROC PRINT

```
proc print data=bio.whas500;
run;
proc print data=bio.whas500 (obs=10);
var hr gender cvd year;
run;
```

Sorting a dataset using PROC SORT

```
proc sort data=bio.whas500;
by hr;
run;
```

• Creating new datasets, new variables, and labeling variables using a DATA step

```
data library.new;
set library.old;
var4 = var1/100;
var5 = var2*1000;
if 0 <= var4 <= 1.6 then var6 = 0;
if var4 > 1.6 then var6 = 1;
label var1="Height (cm)"
var2="Weight (kg)"
var3="Gender"
var4="Height (m)"
var5="Weight (g)"
var6="Height Over 1.6 m?";
```

run;

• Create and clear custom titles

```
/* Create your own title */
title 'My Title';
/* Clear all Default Titles */
title;
```

- Using ODS RTF and ODS PDF to export output to common formats
 - o Basic commands:

(If this doesn't work specify the file name and open the file manually)

```
ods pdf;
/* SAS code for which output is requested */
ods pdf close;
ods rtf;
/* SAS code for which output is requested */
ods rtf close;
```

o More advanced examples:

```
ods pdf notoc file="C:\MySAS\output.pdf";
/* SAS code for which output is requested */
ods pdf close;
ods rtf bodytitle file="C:\MySAS\output.rtf";
/* SAS code for which output is requested */
ods rtf close;
```

• Using ODS GRAPHICS to obtain additional graphs from common analyses (this may or may not be needed in SAS 9.3 and beyond – try and see)

Note: Throughout we have included the ods graphics on/off command when they produce useful output in SAS 9.2. Most readers should now be using SAS version 9.3 or higher which, by default, provide ods graphics without the need for these commands and, in that case, they can usually be ignored.

```
ods graphics on;
/* SAS Procedures */
ods graphics off;
```

Advanced SAS Skills:

• Common SAS options:

Options nodate nonumber;

• Using PROC FORMAT and the FORMAT statement in a DATA step to associate a user defined format with a variable in a dataset

```
proc format;
value YesNoFmt 1='Yes'
               0 = 'No';
value Sex01Ft 0='Male'
              1='Female';
value yr
              1='1997'
              2='1999'
               3='2001';
run;
data WHAS500_formatted;
set whas500_unformatted;
format Gender Sex0Fmt.
       cvd afb sho chf av3 YesNoFmt.
       year yr.;
run;
```

• Using ODS TRACE/SELECT/EXCLUDE to obtain only needed output

```
ods trace on;
/* SAS Procedures */
ods trace off;
```

• Adding text to ODS Output

```
/* Add Text to RTF output
For PDF output change the rtf below to pdf */
    ods escapechar='^';
    ods rtf text='^S={just=center font=("Times Roman",22PT,Bold)}
        Descriptive Statistics using SAS';
```

• Adjusting graph sizes for ODS graphics

```
ods graphics / width=5in height=4in;
```

- Using the INSET statement in PROG SGPLOT and other advanced graphics topics
- Using a WHERE statement in a PROC step to analyze a subset of the data

```
where 40 <= diasbp <= 120;
```

Descriptive Methods – One Categorical Variable

• Frequency distributions and bar charts using PROC FREQ

```
ods graphics on;
proc freq data=bio.whas500;
tables gender;
run;
ods graphics off;
```

Gender						
gender	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
Male	300	60.00	300	60.00		
Female	200	40.00	500	100.00		

Multiple variables can be used in a given tables statement as in the example below:

```
proc freq data=bio.whas500;
tables afb sho chf year; /* List variables separated by spaces */
run;
```

Descriptive Methods – One Quantitative Variable

• Histograms using PROC SGPLOT

```
proc sgplot data=bio.whas500;
histogram hr; /* can only have one variable in HISTOGRAM statement */
run;
```


Normal or non-parametric (kernel) density estimates can be added using the DENSITY statement

```
proc sgplot data=bio.whas500;
histogram hr;
density hr / type=normal;
density hr / type=kernel;
run;
```


• Histograms using PROC UNIVARIATE (density curves can also be added but generally SGPLOT is preferred for this)

```
proc univariate data=bio.whas500 noprint; /* NOPRINT = No text output*/
var hr age;
histogram;
run;
```


Boxplots using PROC SGPLOT

```
proc sgplot data=bio.whas500;
vbox hr; /* VBOX for Vertical Boxplots */
run;
proc sgplot data=bio.whas500;
hbox hr; /* HBOX for Horizontal Boxplots */
run;
```


Summary statistics using PROC MEANS

```
/* Default Summary Statistics */
proc means data=bio.whas500;
var hr; /* can have more than one variable in the VAR statement */
run;
```

	Analysis Variable : hr Initial Heart Rate						
N Mean Std Dev Minimum Maxim							
500	87.0180000	23.5862311	35.0000000	186.0000000			

```
/* Requesting different Summary Statistics */
proc means data=bio.whas500 min q1 median q3 max fw=7 maxdec=2;
var hr;
run;
```

Analysis Variable : hr Initial Heart Rate							
Lower Upper							
Minimum	Quartile	Median	Quartile	Maximum			
35.00	69.00	85.00	100.50	186.00			

• Summary statistics using PROC UNIVARIATE (lengthy output)

proc univariate data=bio.whas500 all; /* ALL option requests all UNIVARIATE output possible */ var hr; /* can have more than one variable in the VAR statement */ run;

Moments						
Ν	500	Sum Weights	500			
Mean	87.018	Sum Observations	43509			
Std Deviation	23.5862311	Variance	556.310297			
Skewness	0.56676662	Kurtosis	0.47176453			
Uncorrected SS	4063665	Corrected SS	277598.838			
Coeff Variation	27.1050025	Std Error Mean	1.05480832			

The UNIVARIATE Procedure Variable: hr (Initial Heart Rate)

Basic Statistical Measures					
Loca	ation	Variability			
Mean	87.0180	Std Deviation	23.58623		
Median	85.0000	Variance	556.31030		
Mode	100.0000	Range	151.00000		
		Interquartile Range	31.50000		

Modes				
Mode	Count			
100	16			

Basic Confidence Limits Assuming Normality							
Parameter Estimate 95% Confidence Limits							
Mean	87.01800	84.94559	89.09041				
Std Deviation	23.58623	22.20935	25.14650				
Variance	556.31030	493.25519	632.34644				

Tests for Location: Mu0=0							
Test	Statistic p Value						
Student's t	t	82.49651	Pr > t	<.0001			
Sign	M 250		$\Pr \ge \mathbf{M} $	<.0001			
Signed Rank	S	62625	Pr >= S	<.0001			

Location Counts: Mu0=0.00					
Count	Value				
Num Obs > Mu0	500				
Num Obs ^= Mu0	500				
Num Obs < Mu0	0				

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.980406	Pr < W	< 0.0001		
Kolmogorov-Smirnov	D	0.049799	Pr > D	< 0.0100		
Cramer-von Mises	W-Sq	0.278942	Pr > W-Sq	< 0.0050		
Anderson-Darling	A-Sq	1.971014	Pr > A-Sq	< 0.0050		

Trimmed Means								
Percent Trimmed in Tail	Number Trimmed in Tail	Trimmed Mean	Std Error Trimmed Mean	95% Confid	lence Limits	DF	t for H0: Mu0=0.00	$\Pr > t $
25.00	125	85.20000	1.139391	82.95593	87.44407	249	74.77676	<.0001

Winsorized Means								
Percent Winsorized in Tail	Number Winsorized in Tail	Winsorized Mean	Std Error Winsorized Mean	95% Confid	lence Limits	DF	t for H0: Mu0=0.00	$\Pr > t $
25.00	125	84.85000	1.140535	82.60367	87.09633	249	74.39492	<.0001

Robust Measures of Scale						
Measure	Value	Estimate of Sigma				
Interquartile Range	31.50000	23.35098				
Gini's Mean Difference	26.37960	23.37831				
MAD	16.00000	23.72160				
Sn	23.85200	23.85200				
Qn	22.21900	22.05141				

Quantiles (Definition 5)									
							Order Statistics		
Quantile	Estimate	95% Confid Assuming	ence Limits Normality	95% Confid Distribut	lence Limits tion Free	LCL Rank	UCL Rank	Coverage	
100% Max	186.0								
99%	150.0	138.1125	146.1037	146	186	491	500	96.23	
95%	128.5	122.7901	129.1550	123	139	466	486	95.89	
90%	117.0	114.5712	120.1696	114	121	437	464	95.63	
75% Q3	100.5	100.6978	105.2915	99	105	357	395	95.01	
50% Median	85.0	84.9456	89.0904	83	88	229	273	95.08	
25% Q1	69.0	68.7445	73.3382	67	72	106	144	95.01	
10%	59.0	53.8664	59.4648	57	61	37	64	95.63	
5%	54.0	44.8810	51.2459	47	56	15	35	95.89	
1%	42.0	27.9323	35.9235	35	45	1	10	96.23	
0% Min	35.0								

Extreme Observations							
Lowe	est	Highest					
Value	Obs	s Value O					
35	1	150	496				
36	3	154	497				
36	2	157	498				
38	4	160	499				
42	7	186	500				

Extreme Values								
	Lowest		Highest					
Order	Value	Freq	I Order Value H					
1	35	1	101	150	3			
2	36	2	102	154	1			
3	38	1	103	157	1			
4	42	3	104	160	1			
5	44	1	105	186	1			

Frequency Counts					
		Percents			
Value	Count	Cell	Cum		
35	1	0.2	0.2		
36	2	0.4	0.6		
38	1	0.2	0.8		
42	3	0.6	1.4		
44	1	0.2	1.6		
All	Observed E	Data Valu	ies		
148	1	0.2	98.4		
149	1	0.2	98.6		
150	3	0.6	99.2		
154	1	0.2	99.4		
157	1	0.2	99.6		
160	1	0.2	99.8		
186	1	0.2	100.0		

Histogram	#	Boxplot
185+*	1	0
.*	1	0
155+***	5	0
·***	7	0
.****	10	1
125+*****	19	İ
·********	41	i
·****	57	++
95+*****	73	1 1
•*************************************	87	*+*
·********	70	1 1
65+*****	78	++
****	35	1
*****	12	i
35+**	4	i i
++++++++		1
t many manufacent up to 0 sounds		

* may represent up to 2 counts

Descriptive Methods – One Quantitative and One Categorical Variable

 Boxplots of the quantitative variable by the categorical variable using PROC SGPLOT (similar results can be obtained using HBOX)

```
proc sgplot data=bio.whas500;
vbox hr / category=cvd; /* can only have 1 variable in VBOX statement*/
run;
```



```
proc sgplot data=bio.whas500;
vbox age / category=gender;
run;
```


• Summaries of the quantitative variable by the categorical variable using PROC MEANS

```
proc means data=bio.whas500;
class cvd;
var hr; /* can have more than one variable in the VAR statement */
run;
```

Analysis Variable : hr Initial Heart Rate								
History of Cardiovascular	N Obs	N	Mean	Std Dev	Minimum	Maximum		
No	125	125	87.4400000	24.0390811	42.0000000	157.0000000		
Yes	375	375	86.8773333	23.4641812	35.0000000	186.0000000		

```
proc means data=bio.whas500;
```

```
class gender;
var age;
run;
```

Analysis Variable : age Age at Hospital Admission								
C I	N	NT	М	GLID	N <i>t</i> •••	M .		
Gender	Obs	IN	Mean	Std Dev	Minimum	Maximum		
Male	300	300	66.5966667	14.9427219	30.0000000	102.0000000		
Female	200	200	74.7200000	12.3007374	32.0000000	104.0000000		

Descriptive Methods – Two Categorical Variables

• Two-Way Tables (Contingency Tables) using PROC FREQ

```
ods graphics on;
proc freq data=bio.whas500;
tables gender*cvd;
run;
ods graphics off;
```

Table of gender by cvd					
gender(Gender)	cvd(History of Cardiovascular)				
Frequency Percent Row Pct Col Pct	No Yes Total				
Male	89 17.80 29.67 71.20	211 42.20 70.33 56.27	300 60.00		
Female	36 7.20 18.00 28.80	164 32.80 82.00 43.73	200 40.00		
Total	125 25.00	375 75.00	500 100.00		

ods graphics on; proc freq data=bio.whas500; tables cvd*gender; run; ods graphics off;

Table of cvd by gender						
cvd(History of Cardiovascular)) gender(Gender)					
Frequency Percent Row Pct Col Pct	Male	Female	Total			
No	89 17.80 71.20 29.67	36 7.20 28.80 18.00	125 25.00			
Yes	211 42.20 56.27 70.33	164 32.80 43.73 82.00	375 75.00			
Total	300 60.00	200 40.00	500 100.00			

Any combination of variables may be used in PROC FREQ with parentheses containing groups of variables to be treated the same way

```
proc freq data=bio.whas500;
tables gender (cvd chf)*gender;
run;
```

Gender						
gender	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
Male	300	60.00	300	60.00		
Female	200	40.00	500	100.00		

Table of cvd by gender					Table o	gender	
cvd(History of Cardiovascular)	gen	der(Gen	der)		chf(Congestive Heart		Acres (Com
Frequency Percent Row Pct Col Pct	Male	Female	Total		Frequency Percent Row Pct	gen	der(Gen
No	89 17.80 71.20 29.67	36 7.20 28.80 18.00	125 25.00		Col Pct No	Male 225 45.00 65.22	Female 120 24.00 34.78
Yes	211 42.20 56.27 70.33	164 32.80 43.73 82.00	375 75.00		Yes	75.00 75 15.00 48.39 25.00	80 16.00 51.61
Total	300 60.00	200 40.00	500 100.00		Total	300 60.00	200 40.00

gender(Gender)

40.00 100.00

Total

345

155

500

31.00

69.00

Descriptive Methods – Two Quantitative Variables

• Scatterplots using PROC SGPLOT

run;

• Scatterplots with LOESS smoothed trend line using PROC SGPLOT

• Calculate Pearson's correlation coefficient (only meaningful for approximately linear trend)

```
ods graphics on;
proc corr data=bio.whas500 plots=matrix(histogram);
var diasbp sysbp;
run;
ods graphics off;
```

The CORR Procedure

2	diasbp
Variables:	sysbp

Simple Statistics							
Variable	Ν	Mean	Std Dev	Sum	Minimum	Maximum	Label
diasbp	500	78.26600	21.54529	39133	6.00000	198.00000	Initial Diastolic Blood Pressure
sysbp	500	144.70400	32.29486	72352	57.00000	244.00000	Initial Systolic Blood

Pearson Correlation Coefficients, N = 500 Prob > r under H0: Rho=0			
diasbp sysbp			
diasbp Initial Diastolic Blood Pressure	1.00000	0.61092 <.0001	
sysbp Initial Systolic Blood	0.61092 <.0001	1.00000	

• Adding information about a categorical variable to a scatterplot

```
proc sgplot data=bio.whas500;
where 40 <= diasbp <= 120;
loess y=hr x=diasbp / group=chf smooth=0.5;
run;
```


Page 19

Inferential Statistics – Investigating Normality

• Normal probability plots using PROC UNIVARIATE

```
ods graphics on;
proc univariate data=bio.whas500 noprint;
var hr age;
qqplot / normal(mu=est sigma=est);
run;
ods graphics off;
```


• Common tests of normality using PROC UNIVARIATE

```
proc univariate data=bio.whas500 normaltest;
var hr age;
ods select testsfornormality;
run;
```

The UNIVARLATE Procedure Variable: hr (Initial Heart Rate)

Tests for Normality					
Test	Sta	tistic	p Value		
Shapiro-Wilk	W	0.980406	$\mathbf{Pr} \leq \mathbf{W}$	<0.0001	
Kolmogorov-Smirnov	D	0.049799	$\mathbf{Pr} > \mathbf{D}$	< 0.0100	
Cramer-von Mises	W-Sq	0.278942	$\mathbf{Pr} > \mathbf{W} \cdot \mathbf{Sq}$	<0.0050	
Anderson-Darling	A-Sq	1.971014	$\mathbf{Pr} > \mathbf{A} \cdot \mathbf{Sq}$	<0.0050	

The	UNIVARLATE Procedure
Variable:	age (Age at Hospital Admission)

Tests for Normality					
Test	Sta	tistic	p Value		
Shapiro-Wilk	W 0.973506		$\mathbf{Pr} \leq \mathbf{W}$	< 0.0001	
Kolmogorov-Smirnov	D	0.082251	$\mathbf{Pr} > \mathbf{D}$	< 0.0100	
Cramer-von Mises	W-Sq	0.732381	$\mathbf{Pr} > \mathbf{W} - \mathbf{Sq}$	<0.0050	
Anderson-Darling	A-Sq	4.44345	$\mathbf{Pr} > \mathbf{A} - \mathbf{Sq}$	<0.0050	

Inferential Statistics – One Sample – Binomial Proportion

• Tests and Intervals for one binomial proportion using PROC FREQ. The following conducts a test of the null hypothesis that the proportion of congestive heart complications in the population is 25%. Confidence intervals are also provided via this output.

```
proc freq data=bio.whas500;
tables chf / binomial(level="Yes" p=0.25);
run;
```

Congestive Heart Complications					
chf	chf Frequency Percent Cumu			Cumulative Percent	
No	345	69.00	345	69.00	
Yes	155	31.00	500	100.00	

Binomial Proportion for chf = Yes		
Proportion	0.3100	
ASE	0.0207	
95% Lower Conf Limit	0.2695	
95% Upper Conf Limit	0.3505	
Exact Conf Limits		
95% Lower Conf Limit	0.2697	
95% Upper Conf Limit	0.3526	

Test of HO: Proportion = 0.25		
ASE under HO	0.0194	
Z	3.0984	
$\mathbf{One}\text{-sided}\mathbf{Pr}\! > \ \mathbf{Z}$	0.0010	
$Two\text{-sided} \Pr \geq \mathbf{Z} $	0.0019	

Sample Size = 500

• Power calculations for one binomial proportion using PROC POWER

```
proc power;
onesamplefreq
    test=z
    method=normal
    proportion = .30
    nullproportion = .25
    ntotal = 100
    alpha = 0.05
    sides = 1
    power=.;
run;
```

The POWER Procedure Z Test for Binomial Proportion

Fixed Scenario Elements				
Method	Normal approximation			
Number of Sides	1			
Null Proportion	0.25			
Alpha	0.05			
Binomial Proportion	0.3			
Total Sample Size	100			
Variance Estimate	Null Variance			

Computed Power	
Power	
0.322	

• Sample size calculations for one binomial proportion using PROC POWER

```
proc power;
onesamplefreq
    test=z
    method=normal
    proportion = .30
    nullproportion = .25
    ntotal = .
    alpha = 0.05
    sides = 1
    power=.90;
run;
```

The POWER Procedure Z Test for Binomial Proportion

Fixed Scenario Elements			
Method	Normal approximation		
Number of Sides	1		
Null Proportion	0.25		
Alpha	0.05		
Binomial Proportion	0.3		
Nominal Power	0.9		
Variance Estimate	Null Variance		

Computed N Total	
Actual Power	N Total
0.900	676

Inferential Statistics – One Sample – Quantitative Variable

• T-tests and confidence intervals for the mean of a normally distributed population using PROC TTEST (confidence intervals for the standard deviation of the population are also reported)

```
ods graphics on;
proc ttest data=bio.whas500 h0=80;
var hr;
run;
ods graphics off;
```

The TTEST Procedure

Variable:	hr	(Initial	Heart	Rate)
-----------	----	----------	-------	-------

N	Mean	Std Dev	Std Err	Minimum	Maximum
500	87.0180	23.5862	1.0548	35.0000	186.0

Mean	95% C	L Mean	Std Dev	95% (D	CL Std ev
87.0180	84.9456	89.0904	23.5862	22.2093	25.1465

DF	t Value	$\mathbf{Pr} \ge t $
499	6.65	<.0001

• T-tests and confidence intervals for the mean of a normally distributed population using PROC UNIVARIATE (confidence intervals for the standard deviation and variance of the population are also reported)

```
proc univariate data=bio.whas500 mu0=80 cibasic;
var hr;
ods select testsforlocation basicintervals;
run;
```

The UNIVARLATE Procedure Variable: hr (Initial Heart Rate)

Basic Confidence Limits Assuming Normality			
Parameter	Estimate 95% Confidence Limit		
Mean	87.01800	84.94559	89.09041
Std Deviation	23.58623	22.20935	25.14650
Variance	556.31030	493.25519	632.34644

Tests for Location: Mu0=80				
Test	Statistic p Value			ue
Student's t	t	6.653342	$\mathbf{Pr} \ge \mathbf{t} $	<.0001
Sign	М	43.5	$\mathbf{Pr} \mathrel{>=} \mathbf{M} $	<.0001
Signed Rank	S	17269.5	$\mathbf{Pr} \mathrel{>=} \mathbf{S} $	<.0001

• Power calculations for one sample t-tests using PROC POWER

```
proc power;
onesamplemeans
    test=t
    dist=normal
    mean = 30
    nullmean = 28
    ntotal = 100
    alpha = 0.05
    sides = 1
    std = 6
    power=.;
run;
```

The POWER Procedure One-sample t Test for Mean

Fixed Scenario Elements	
Distribution	Normal
Method	Exact
Number of Sides	1
Null Mean	28
Alpha	0.05
Mean	30
Standard Deviation	6
Total Sample Size	100

Computed Power	
Power	
0.952	

• Sample size calculations for one sample t-tests using PROC POWER

proc power;

onesamplemeans
test=t
dist=normal
mean = 30
nullmean = 28
ntotal = .
alpha = 0.05
sides = 1
std = 6
<pre>power=.99;</pre>
run;

The POWER Procedure One-sample t Test for Mean

Fixed Scenario Elements	
Distribution	Normal
Method	Exact
Number of Sides	1
Null Mean	28
Alpha	0.05
Mean	30
Standard Deviation	6
Nominal Power	0.99

Computed N Total	
Actual Power	N Total
0.990	144

• Sign test and Signed Rank test for the **median** of a population using PROC UNIVARIATE (same code and output as above).

```
proc univariate data=bio.whas500 mu0=80 cibasic;
var hr;
ods select testsforlocation basicintervals;
run;
```

Tests for Location: Mu0=80							
Test	Sta	tistic	p Val	ue			
Student's t	t	6.653342	$\mathbf{Pr} > \mathbf{t} $	<.0001			
Sign	М	43.5	$\mathbf{Pr} \mathrel{>=} \mathbf{M} $	<.0001			
Signed Rank	S	17269.5	$\Pr >= S $	<.0001			

• Power graphs using PROC POWER (can be requested for any design, not just onesamplemeans)

Page 26

Inferential Statistics – Paired Samples – Quantitative Variable

• For the following we use the data below, entered into SAS directly using a DATA step

```
data example;
input jan apr;
diff=jan-apr;
datalines;
139 104
122 113
126 100
64 88
78 61
run;
```

• Paired t-tests using PROC TTEST and the PAIRED statement

0

100

120

1.0

```
ods graphics on;
proc ttest data=example;
paired jan*apr;
run;
ods graphics off;
```


0.0 Quantile 0.5

1.0

• Paired t-tests using PROC UNIVARIATE (this code also conducts the <u>sign test</u> and <u>signed rank</u> <u>test</u> for paired samples). I have requested tests for normality as well.

```
proc univariate data=example cibasic normaltest;
var diff;
ods select basicintervals testsforlocation testsfornormality;
run;
```

The UNIVARIATE Procedure Variable: diff

Basic Confidence Limits Assuming Normality						
Parameter	Estimate	95% Confidence Limits				
Mean	12.60000	-15.53129	40.73129			
Std Deviation	22.65612	13.57404	65.10364			
Variance	513.30000	184.25443	4238			

Tests for Location: Mu0=0							
Test	Sta	tistic	p Val	ue			
Student's t	t	1.243569	$\mathbf{Pr} > \mathbf{t} $	0.2816			
Sign	М	1.5	$\mathbf{Pr} \mathrel{>=} \mathbf{M} $	0.3750			
Signed Rank	s	4.5	$\mathbf{Pr} \mathrel{>=} \mathbf{S} $	0.3125			

Tests for Normality						
Test	Statistic p Value			ue		
Shapiro-Wilk	W	0.913865	$\mathbf{Pr} \leq \mathbf{W}$	0.4912		
Kolmogorov-Smirnov	D	0.236875	$\mathbf{Pr} > \mathbf{D}$	>0.1500		
Cramer-von Mises	W-Sq	0.047823	$\mathbf{Pr} > \mathbf{W}\text{-}\mathbf{Sq}$	>0.2500		
Anderson-Darling	A-Sq	0.302348	$\mathbf{Pr} \ge \mathbf{A} \cdot \mathbf{Sq}$	>0.2500		

Inferential Statistics – Two Independent Samples – Quantitative Variable

• Comparing means of two independent samples from normal populations using PROC TTEST

```
ods graphics on;
proc ttest data=bio.whas500;
class gender;
var hr sysbp bmi;
run;
ods graphics off;
```

gender	N	Mean	Std Dev	Std Err	Minimum	Maximum
Male	300	84.7867	23.9829	1.3847	35.0000	186.0
Female	200	90.3650	22.6272	1.6000	36.0000	160.0
Diff (1-2)		-5.5783	23.4506	2.1407		

Variable: hr (Initial Heart Rate)

gender	Method	Mean	95% CI	L Mean	Std Dev	95% (D	CL Std ev
Male		84.7867	82.0618	87.5116	23.9829	22.2051	26.0725
Female		90.3650	87.2099	93.5201	22.6272	20.6058	25.0919
Diff (1-2)	Pooled	-5.5783	-9.7843	-1.3723	23.4506	22.0803	25.0035
Diff (1-2)	Satterthwaite	-5.5783	-9.7369	-1.4198			

Method	Variances	DF	t Value	$\mathbf{Pr} > t $
Pooled	Equal	498	-2.61	0.0094
Satterthwaite	Unequal	443.23	-2.64	0.0087

Equality of Variances						
Method Num DF Den DF F Value Pr						
Folded F	299	199	1.12	0.3755		

gender	N	Mean	Std Dev	Std Err	Minimum	Maximum
Male	300	142.6	31.1602	1.7990	57.0000	244.0
Female	200	147.9	33.7491	2.3864	63.0000	240.0
Diff (1-2)		-5.3683	32.2197	2.9412		

Variable: sysbp (Initial Systolic Blood)

gender	Method	Mean	95% CL	. Mean	Std Dev	95% (D	CL Std ev
Male		142.6	139.0	146.1	31.1602	28.8503	33.8752
Female		147.9	143.2	152.6	33.7491	30.7341	37.4253
Diff (1-2)	Pooled	-5.3683	-11.1471	0.4104	32.2197	30.3370	34.3534
Diff (1-2)	Satterthwaite	-5.3683	-11.2435	0.5068			

Method	Variances	DF	t Value	$Pr \ge t $
Pooled	Equal	498	-1.83	0.0686
Satterthwaite	Unequal	402.86	-1.80	0.0732

Equality of Variances						
Method	Num DF	Den DF	F Value	$\mathbf{Pr} > \mathbf{F}$		
Folded F	199	299	1.17	0.2123		

gender	N	Mean	Std Dev	Std Err	Minimum	Maximum
Male	300	27.2689	4.8284	0.2788	15.9270	42.7659
Female	200	25.6311	6.0520	0.4279	13.0455	44.8389
Diff (1-2)		1.6378	5.3510	0.4885		

Variable:	bmi	(Body	Mass.	Index)
, and the back	Dines	Loug	1,1,1,1,0,0,0,0	many

gender	Method	Mean	95% CI	L Mean	Std Dev	95% (D	CL Std ev
Male		27.2689	26.7203	27.8175	4.8284	4.4705	5.2491
Female		25.6311	24.7872	26.4750	6.0520	5.5114	6.7113
Diff (1-2)	Pooled	1.6378	0.6781	2.5975	5.3510	5.0384	5.7054
Diff (1-2)	Satterthwaite	1.6378	0.6334	2.6422			

Method	Variances	DF	t Value	$Pr \ge t $
Pooled	Equal	498	3.35	0.0009
Satterthwaite	Unequal	360.51	3.21	0.0015

Equality of Variances					
Method Num DF Den DF F Value Pr > F					
Folded F	199	299	1.57	0.0004	

• Comparing two distributions with the Wilcoxon Rank Sum test using PROC NPAR1WAY

```
proc nparlway data=bio.whas500 wilcoxon;
class gender;
var hr sysbp bmi;
run;
```

Wilcoxon Scores (Rank Sums) for Variable hr Classified by Variable gender						
gender	gender N Sum of Expected Std Dev Mea Scores Under H0 Under H0 Scor					
Male	300	70286.50	75150.0	1582.48016	234.288333	
Female	200	54963.50	50100.0	1582.48016	274.817500	
Average scores were used for ties.						

The NPAR1WAY Procedure

Wilcoxon Two-Sample Test				
Statistic	54963.5000			
Normal Approximation				
Z	3.0730			
One-Sided Pr > Z	0.0011			
$Two\text{-}Sided \ Pr \geq Z $	0.0021			
t Approximation				
One-Sided Pr > Z	0.0011			
Two-Sided $Pr > Z $ 0.0022				
Z includes a continuity correction of 0.5.				

Kruskal-Wallis Test			
Chi-Square 9.4454			
DF	1		
$\mathbf{Pr} > \mathbf{Chi}$ -Square	0.0021		

Wilcoxon Scores (Rank Sums) for Variable sysbp Classified by Variable gender					
gender N Sum of Expected Std Dev Mean Scores Under H0 Under H0					
Male	300	73063.0	75150.0	1582.53600	243.543333
Female	200	52187.0	50100.0	1582.53600	260.935000
Average scores were used for ties.					

The NPAR1WAY Procedure

Wilcoxon Two-Sample Test					
Statistic 52187.000					
Normal Approximation					
Z	1.3185				
One-Sided Pr > Z	0.0937				
$Two\text{-}Sided \ Pr \geq Z $	0.1874				
t Approximation					
One-Sided Pr > Z	0.0940				
Two-Sided Pr $> \mathbf{Z} $ 0.1880					
Z includes a continuity correction of 0.5.					

Kruskal-Wallis Test				
Chi-Square	1.7392			
DF	1			
$\mathbf{Pr} > \mathbf{Chi}$ -Square	0.1872			

Wilcoxon Scores (Rank Sums) for Variable bmi Classified by Variable gender						
gender	gender N Sum of Expected Std Dev Mean Scores Under H0 Under H0 Score					
Male	300	81163.0	75150.0	1582.71329	270.543333	
Female	200	44087.0	50100.0	1582.71329	220.435000	
Average scores were used for ties.						

The NPAR1WAY Procedure

Wilcoxon Two-Sample Test				
Statistic	44087.0000			
Normal Approximation				
Z	-3.7989			
One-Sided Pr < Z	<.0001			
$Two\text{-}Sided \ Pr \geq Z $	0.0001			
t Approximation				
One-Sided Pr < Z	<.0001			
$Two\text{-}Sided \ Pr \geq Z $	0.0002			
Z includes a continuity correction of 0.5.				

Kruskal-Wallis Test				
Chi-Square 14.4337				
DF	1			
$\mathbf{Pr} > \mathbf{Chi}$ -Square	0.0001			

 Obtaining the exact p-value for the Wilcoxon Rank Sum test using PROC NPAR1WAY (only the 2nd table – of three – is provided below, the rest remains the same)

```
data smallsamp;
set bio.whas500;
where sho=1; /* keep only 22 obs. with cardiogenic shock */
run;
proc nparlway data=smallsamp wilcoxon;
class gender;
var hr;
exact wilcoxon;
run;
```

Wilcoxon Two-Sample Test			
Statistic (S)	114.0000		
Normal Approximation			
Z	0.6680		
One-Sided Pr> Z	0.2521		
Two-Sided Pr > Z	0.5042		
t Approximation			
One-Sided Pr> Z	0.2557		
$Two\text{-}Sided \operatorname{Pr} \geq \mathbf{Z} $	0.5114		
Exact Test			
One-Sided Pr>= S	0.2510		
Two-Sided Pr >= S - Mean	0.5009		
Z includes a continuity correction of 0.5.			

Page 38

Inferential Statistics – Two Categorical Variables

Chi-square and Fisher's exact tests for association or equality of two proportions (2x2 ٠ tables)

```
proc freq data=bio.whas500;
table gender*(cvd afb) / chisq riskdiff ;
run;
```

Table of g	gender	by cvd			
	cvd	(Histor	y of		
gender(Gender)	Card	liovasc	ular)		
Frequency					
Percent					
Row Pct					
ColPct	No Yes Total				
Male	89	211	300		
	17.80	42.20	60.00		
	29.67	70.33			
	71.20	56.27			
Female	36	164	200		
	7.20	32.80	40.00		
	40.00				
	18.00	82.00			
	18.00 28.80	82.00 43.73			
Total	18.00 28.80 125	82.00 43.73 375	500		

The FREQ Procedure

Statistics for Table of gender by cvd

Statistic	DF	Value	Prob
Chi-Square	1	8.7111	0.0032
Likelihood Ratio Chi-Square	1	8.9697	0.0027
Continuity Adj. Chi-Square	1	8.1000	0.0044
Mantel-Haenszel Chi-Square	1	8.6937	0.0032
Phi Coefficient		0.1320	
Contingency Coefficient		0.1309	
Cramer's V		0.1320	

Fisher's Exact Test			
Cell(1,1) Frequency (F)	89		
Left-sided Pr <= F	0.9990		
Right-sided Pr >= F	0.0020		
Table Probability (P)	0.0010		
Two-sided Pr <= P	0.0032		

Column 1 Risk Estimates							
	Risk	ASE	(Asympto Confiden	otic) 95% ce Limits	(Exac Confiden	t) 95% ce Limits	
Row 1	0.2967	0.0264	0.2450	0.3484	0.2455	0.3519	
Row 2	0.1800	0.0272	0.1268	0.2332	0.1294	0.2404	
Total	0.2500	0.0194	0.2120	0.2880	0.2126	0.2904	
Difference	0.1167	0.0379	0.0425	0.1909			
Difference is (Row 1 - Row 2)							

Column 2 Risk Estimates						
	Risk	ASE	(Asympto Confiden	otic) 95% ce Limits	(Exact Confiden	t) 95% ce Limits
Row 1	0.7033	0.0264	0.6516	0.7550	0.6481	0.7545
Row 2	0.8200	0.0272	0.7668	0.8732	0.7596	0.8706
Total	0.7500	0.0194	0.7120	0.7880	0.7096	0.7874
Difference	-0.1167	0.0379	-0.1909	-0.0425		
Difference is (Row 1 - Row 2)						

Sample Size = 500

The FREQ Procedure

Table of gender by afb					
gender(Gender)	afb(Atrial Fibrillation)				
Frequency Percent Row Pct Col Pct	No Yes Tota				
Male	257 51.40 85.67 60.90	43 8.60 14.33 55.13	300 60.00		
Female	165 33.00 82.50 39.10	35 7.00 17.50 44.87	200 40.00		
Total	422 84.40	78 15.60	500 100.00		

Statistics for Table of gender by afb

Statistic	DF	Value	Prob
Chi-Square	1	0.9139	0.3391
Likelihood Ratio Chi-Square	1	0.9053	0.3414
Continuity Adj. Chi-Square	1	0.6893	0.4064
Mantel-Haenszel Chi-Square	1	0.9121	0.3396
Phi Coefficient		0.0428	
Contingency Coefficient		0.0427	
Cramer's V		0.0428	

Fisher's Exact Test			
Cell (1,1) Frequency (F)	257		
Left-sided Pr <= F	0.8602		
Right-sided Pr >= F	0.2027		
Table Probability (P)	0.0629		
Two-sided Pr <= P	0.3789		

Column 1 Risk Estimates									
	Risk	ASE	(Asympto Confiden	otic) 95% ce Limits	(Exact Confiden	t) 95% ce Limits			
Row 1	0.8567	0.0202	0.8170	0.8963	0.8118	0.8943			
Row 2	0.8250	0.0269	0.7723	0.8777	0.7651	0.8750			
Total	0.8440	0.0162	0.8122	0.8758	0.8092	0.8747			
Difference 0.0317 0.0336 -0.0343 0.0976									
	Difference is (Row 1 - Row 2)								

Column 2 Risk Estimates									
	Risk	ASE	(Asympto Confiden	otic) 95% ce Limits	(Exact Confiden	t) 95% ce Limits			
Row 1	0.1433	0.0202	0.1037	0.1830	0.1057	0.1882			
Row 2	0.1750	0.0269	0.1223	0.2277	0.1250	0.2349			
Total	0.1560	0.0162	0.1242	0.1878	0.1253	0.1908			
Difference -0.0317 0.0336 -0.0976 0.0343									
Difference is (Row 1 - Row 2)									

Sample Size = 500

• Chi-square and Fisher's exact tests for association (RxC tables). Fisher's exact test must be requested in this case.

```
proc freq data=bio.whas500;
table gender*year / chisq fisher ;
run;
```

Table of gender by year							
gender(Gender)	yea	ar(Col	nort Y	ear)			
Frequency Percent Row Pct Col Pct	1997	1999	2001	Total			
Male	97 19.40 32.33 60.63	111 22.20 37.00 59.04	92 18.40 30.67 60.53	300 60.00			
Female	63 12.60 31.50 39.38	77 15.40 38.50 40.96	60 12.00 30.00 39.47	200 40.00			
Total	160 32.00	188 37.60	1 <i>5</i> 2 30.40	500 100.00			

The FREQ Procedure

Statistics for Table of gender by year

Statistic	DF	Value	Prob
Chi-Square	2	0.1154	0.9439
Likelihood Ratio Chi-Square	2	0.1153	0.9440
Mantel-Haenszel Chi-Square	1	0.0005	0.9816
Phi Coefficient		0.0152	
Contingency Coefficient		0.0152	
Cramer's V		0.0152	

Fisher's Exact Test					
Table Probability (P) 0.0065					
$Pr \le P$	0.9527				

Sample Size = $5\theta\theta$

• McNemar's tests for paired proportions. Consider a test for high blood pressure (Y/N) at baseline and again at 6 months.

```
data mcnemar;
input ID HBP0 HBP1 @@;
label
            HBP0 = "High BP at Baseline"
            HBP1 = "High BP at 6 Mo.";
datalines;
1
   0 0
            2
                1 1
                        3
                            1 0
                                    4
                                        1 1
                                                 5
                                                     1 1
                                                             6
                                                                 0 0
7
    0 0
                0 0
                        9
                            0 0
                                        1 1
                                                11
                                                    0 0
                                                             12
                                                                 1 1
            8
                                    10
   1 1
                            0 0
                                        1 1
                                                 17
                                                    0 0
13
            14
               1 1
                        15
                                    16
                                                             18
                                                                 1 1
   0 1
                                                             24
19
            20
               0 0
                        21
                            0 1
                                    22
                                        1 1
                                                 23
                                                     1 0
                                                                 0 0
25
   0 0
            26
               1 0
                        27
                            0 0
                                        0 0
                                                 29
                                                     0 0
                                                             30
                                                                 1 0
                                    28
            32 0 0
31
   0 1
                        33
                            1 0
                                    34
                                       1 0
                                                 35
                                                    1 1
                                                             36
                                                                 0 0
37
   1 1
            38 0 0
                        39
                            0 0
                                    40
                                        0 0
                                                 41
                                                    1 1
                                                             42
                                                                 0 0
43
   0 1
            44 1 1
                        45
                            0 0
                                    46
                                        0 0
                                                 47
                                                    0 0
                                                             48
                                                                1 1
49
   0 0
            50 1 0
                        51
                            0 0
                                    52
                                        0 0
                                                 53
                                                    0 0
                                                             54
                                                                1 1
            56 1 1
55
   1 0
                        57
                            0 0
                                    58
                                        1 1
                                                 59
                                                    0 0
                                                             60
                                                                 0 1
61
   0 0
            62
                1 1
                        63
                            1 0
                                    64
                                        0 0
                                                 65
                                                    1 0
                                                             66
                                                                 0 0
                                        1 1
67
   1 0
            68 0 0
                        69
                            1 0
                                    70
                                                 71
                                                    1 0
                                                             72
                                                                 0 0
            74 0 1
                        75 0 0
                                    76 0 0
                                                 77 0 0
73
   0 0
                                                             78 1 1
            80 1 0
79
                                                 83 1 0
                                                             84 0 0
   1 0
                        81 1 1
                                    82
                                        0 0
                        87 1 0
85
   0 0
            86 1 0
                                    88
                                        0 0
                                                 89
                                                    1 1
                                                             90
                                                                 0 0
            92 0 0
                        93 1 1
91 0 0
                                    94 0 0
                                                95 1 0
                                                             96 1 0
;
```

```
proc freq data=mcnemar;
tables HBP0*HBP1 / agree;
exact mcnem;
run;
```

Table of HBP0 by HBP1							
HBPO (High BP at Baseline)	HBP1 (High BP at 6 Mo.)						
Frequency Percent Row Pct Col Pct	0	1	Total				
0	46 47.92 88.46 69.70	6 6.25 11.54 20.00	52 54.17				
1	20 20.83 45.45 30.30	24 25.00 54.55 80.00	44 45.83				
Total	66 68.75	30 31.25	96 100.00				

Statistics for Table of HBP0 by HBP1

McNemar's Test					
Statistic (S)	7.5385				
DF	1				
Asymptotic Pr > S	0.0060				
Exact Pr >= S	0.0094				

Simple Kappa Coefficient					
Kappa	0.4409				
ASE	0.0888				
95% Lower Conf Limit	0.2668				
95% Upper Conf Limit	0.6150				

Sample Size = 96

Inferential Statistics – Two Quantitative Variables

• Tests and confidence intervals for the population correlation coefficient using PROC CORR. Using the VAR statement alone computes for all possible pairs. Using the VAR and WITH statements produces only combinations with one variable from each statement.

```
ods graphics on;
proc corr data=bio.whas500 plots=matrix(histogram) fisher;
var diasbp sysbp age ;
run;
ods graphics off;
```

3 Variables:	diasbp age	sysbp

Simple Statistics									
Variable N Mean Std				Sum	Minimum	Maximum	Label		
diasbp	500	78.26600	21.54529	39133	6.00000	198.00000	Initial Diastolic Blood Pressure		
sysbp	500	144.70400	32.29486	72352	57.00000	244.00000	Initial Systolic Blood		
age	500	69.84600	14.49146	34923	30.00000	104.00000	Age at Hospital Admission		

Pearson Correlation Coefficients, N = 500 Prob > r under H0: Rho=0									
diasbp sysbp age									
diashp	1.00000	0.61092	-0.20604						
Initial Diastolic Blood Pressure		<.0001	<.0001						
sysbp	0.61092	1.00000	-0.01560						
Initial Systolic Blood	<.0001		0.7279						
age	-0.20604	-0.01560	1.00000						
Age at Hospital Admission	<.0001	0.7279							

	Pearson Correlation Statistics (Fisher's z Transformation)										
Variable	With Variable	N	Sample Correlation	Fisher's z	Bias Adjustment	Correlation Estimate	95% Confid	p Value for H0:Rho=0			
diasbp	sysbp	500	0.61092	0.71038	0.0006121	0.61053	0.552417	0.662741	<.0001		
diasbp	age	500	-0.20604	-0.20904	-0.0002065	-0.20585	-0.288333	-0.120328	<.0001		
sysbp	age	500	-0.01560	-0.01560	-0.0000156	-0.01558	-0.103133	0.072206	0.7280		

Using VAR and WITH

```
proc corr data=bio.whas500 fisher;
var diasbp age ;
with sysbp ;
run;
```

1 Wit	h Variables:	sysbp
2	Variables:	diasbp age

Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
sysbp	500	144.70400	32.29486	72352	57.00000	244.00000	Initial Systolic Blood
diasbp	500	78.26600	21.54529	39133	6.00000	198.00000	Initial Diastolic Blood Pressure
age	500	69.84600	14.49146	34923	30.00000	104.00000	Age at Hospital Admission

Pearson Correlation Coefficients, N = 500 Prob > r under H0: Rho=0					
	diasbp	age			
sysbp Initial Systolic Blood	0.61092 <.0001	-0.01560 0.7279			

	Pearson Correlation Statistics (Fisher's z Transformation)									
Variable	With Variable	N	Sample Correlation	Fisher's z	Bias Adjustment	Correlation Estimate	on te 95% Confidence Limits P Value HO:Rho			
diasbp	sysbp	500	0.61092	0.71038	0.0006121	0.61053	0.552417	0.662741	<.0001	
age	sysbp	500	-0.01560	-0.01560	-0.0000156	-0.01558	-0.103133	0.072206	0.7280	

Spearman Rank Correlation:

```
proc corr data=bio.whas500 spearman;
var diasbp sysbp ;
run;
```

2	diasbp
Variables:	sysbp

Simple Statistics								
Variable N Mean Std Dev Median Minimum Maxim							Label	
diasbp	500	78.26600	21.54529	79.00000	6.00000	198.00000	Initial Diastolic Blood Pressure	
sysbp	500	144.70400	32.29486	141.50000	57.00000	244.00000	Initial Systolic Blood	

Spearman Correlation Coefficients, N = 500 Prob > r under H0: Rho=0				
	diasbp	sysbp		
diasbp Initial Diastolic Blood Pressure	1.00000	0.61461 <.0001		
sysbp Initial Systolic Blood	0.61461 <.0001	1.00000		

• Simple linear regression using PROC REG

Continuous Predictor

```
ods graphics on;
proc reg data=bio.whas500;
model sysbp = diasbp;
run;
quit;
ods graphics off;
```

The REG Procedure Model: MODEL1 Dependent Variable: sysbp Initial Systolic Blood

Number of Observations Read	500
Number of Observations Used	500

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr> F			
Model	1	194236	194236	296.54	<.0001			
Error	498	326200	655.01956					
Corrected Total	499	520436						

Root MSE	25.59335	R-Square	0.3732
Dependent Mean	144.70400	Adj R-Sq	0.3720
Coeff Var	17.68669		

Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	$\mathbf{Pr} \ge \mathbf{t} $		
Intercept	Intercept	1	73.03426	4.31647	16.92	<.0001		
diasbp	Initial Diastolic Blood Pressure	1	0.91572	0.05318	17.22	<.0001		

Categorical Predictor

```
ods graphics on;
proc reg data=bio.whas500;
model sysbp = cvd;
run;
quit;
ods graphics off;
```

The REG Procedure Model: MODEL1 Dependent Variable: sysbp Initial Systolic Blood

Number of Observations Read	500
Number of Observations Used	500

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr> F			
Model	1	11604	11604	11.36	0.0008			
Error	498	508832	1021.75195					
Corrected Total	499	520436						

Root MSE	31.96485	R-Square	0.0223
Dependent Mean	144.70400	Adj R-Sq	0.0203
Coeff Var	22.08982		

Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr ≥ t		
Intercept	Intercept	1	136.36000	2.85902	47.69	<.0001		
cvd	History of Cardiovascular	1	11.12533	3.30132	3.37	0.0008		


```
proc ttest data=bio.whas500;
class cvd;
var sysbp;
run;
```

Method	Variances	DF	t Value	$\mathbf{Pr} \ge \mathbf{t} $
Pooled	Equal	498	-3.37	0.0008
Satterthwaite	Unequal	257.55	-3.73	0.0002

```
proc corr data=bio.whas500;
var cvd ;
with sysbp;
run;
```

$\begin{array}{l} Pearson \ Correlation \ Coefficients, N=500 \\ Prob \geq r \ under \ H0: \ Rho=0 \end{array}$					
	cvd				
sysbp Initial Systolic Blood	0.14932 0.0008				

Inferential Statistics – Multiple Linear Regression

• Using PROC REG

```
ods graphics on;
proc reg data=bio.whas500;
model sysbp = diasbp age gender cvd ;
run;
quit;
ods graphics off;
```

The REG Procedure Model: MODEL1 Dependent Variable: sysbp Initial Systolic Blood

Numb	er of	500			
Numb	er of	f Observat	500		
	Ан	alysis of `	Variance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr> F
Model	4	213813	53453	86.29	<.0001
Error	495	306623	619.44055		
Corrected Total	499	520436			

Root MSE	24.88856	R-Square	0.4108
Dependent Mean	144.70400	Adj R-Sq	0.4061
Coeff Var	17.19964		

Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	Intercept	1	50.80299	7.66412	6.63	<.0001		
diasbp	Initial Diastolic Blood Pressure	1	0.94773	0.05295	17.90	<.0001		
age	Age at Hospital Admission	1	0.15127	0.08222	1.84	0.0664		
gender	Gender	1	6.81240	2.37505	2.87	0.0043		
cvd	History of Cardiovascular	1	8.58139	2.61881	3.28	0.0011		

Page 52

Inferential Statistics – Additional Topics

• Non-parametric confidence intervals for the median or other percentiles.

```
proc univariate data=bio.whas500 ciquantdf;
var hr ;
ods select quantiles;
run;
```

The UNIVARIATE Procedure Variable: hr (Initial Heart Rate)

Quantiles (Definition 5)									
				Or	rder Statistic	s			
Quantile	Estimate	95% Confid Distribut	ence Limits ion Free	LCL Rank	UCL Rank	Coverage			
100% Max	186.0								
99%	150.0	146	186	491	500	96.23			
95%	128.5	123	139	466	486	95.89			
90%	117.0	114	121	437	464	95.63			
75% Q3	100.5	99	105	357	395	95.01			
50% Median	85.0	83	88	229	273	95.08			
25% Q1	69.0	67	72	106	144	95.01			
10%	59.0	57	61	37	64	95.63			
5%	54.0	47	56	15	35	95.89			
1%	42.0	35	45	1	10	96.23			
0% Min	35.0								