
DID I GET THIS: State the Hypotheses for a test for a population mean 

For the following scenarios:  

• Give the null and alternative hypotheses and

• State in words what µ represents in your hypotheses (define your parameter µ)

Question 1: The National Assessment of Educational Progress (NAEP) is administered annually to 4th, 
8th, and 12th graders in the United States. On the math assessment, a score above 275 is considered an 
indication that a student has the skills to balance a checkbook. In a random sample of 500 young men 
between the ages of 18 and 20, the mean NAEP math score is 272. Do we have evidence to support the 
claim that young men nationwide have a mean score below 275? 

CHECK ANSWER 

Question 2: The National Center for Health Statistics reports that the systolic blood pressure for males 
35 to 44 years of age has a mean of 128. In a study of business executives, a random sample of 100 
executives has a mean systolic blood pressure of 134. Do the data suggest that the mean systolic blood 
pressure for business executives is higher than 128? 

CHECK ANSWER 

Question 3: An analytical chemistry lab is conducting quality control tests on a drug. A single dosage of 
the drug should contain 8 mg of active ingredient. Of course, there will be a small amount of variability 
due to imperfections in the production process, but the mean of all dosages produced should be 8 mg. 
In 20 random samples, the mean amount of active ingredient is 7.7 mg. Do the data suggest that the 
mean amount of active ingredient in all dosages produced is different from 8 mg? 

CHECK ANSWER 



DID I GET THIS: Checking Conditions for Hypothesis Testing for the Population Mean 

Use the histograms provided to answer the following questions. 

QUESTION 1: The sample size is 25. Using the histogram, decide if we should proceed with a hypothesis 
test for the population mean and explain why or why not. 

SELECT (A) Yes, the sample size is large enough. 

SELECT (B) Yes, although the sample size < 30, there are no outliers. 

SELECT (C) Yes, although the sample size < 30, the distribution is not very far from normal in shape, 
with no outliers. 

SELECT (D) No, the sample size is not large enough. 

SELECT (E) No, the sample size is < 30 and there are outliers. 

QUESTION 2: 

SELECT (A) Conditions are met; it is safe to proceed with the t-test. 

SELECT (B) Conditions may not be met; conduct the t-test but include a disclaimer with the results. 

SELECT (C) Conditions are not met; do not use the t-test. 



QUESTION 3: 

SELECT (A) Conditions are met; it is safe to proceed with the t-test. 

SELECT (B) Conditions may not be met; conduct the t-test, but include a disclaimer with the results. 

SELECT (C) Conditions are not met; do not use the t-test. 

QUESTION 4: 

SELECT (A) Conditions are met; it is safe to proceed with the t-test. 

SELECT (B) Conditions may not be met; conduct the t-test but include a disclaimer with the results. 

SELECT (C) Conditions are not met; do not use the t-test. 



QUESTION 5: 

SELECT (A) Conditions are met; it is safe to proceed with the t-test. 

SELECT (B) Conditions may not be met; conduct the t-test but include a disclaimer with the results. 

SELECT (C) Conditions are not met; do not use the t-test. 

QUESTION 6: 

SELECT (A) Conditions are met; it is safe to proceed with the t-test. 

SELECT (B) Conditions may not be met; conduct the t-test but include a disclaimer with the results. 

SELECT (C) Conditions are not met; do not use the t-test. 



QUESTION 7: Suppose that Intel is testing a brand new manufacturing process, for which prior 
information wasn’t available. In particular, for this new process, the population distribution’s shape isn’t 
known. Use the following histograms to help you answer the question below. 

To test whether or not the mean circuit board thickness is 12 mm with the new process, for which one 
of the following would the t-test NOT be justified? 

SELECT (A) A random sample of 9 circuit boards is tested; the histogram of the data is as shown above 
in histogram A. 

SELECT (B) A random sample of 40 circuit boards is tested; the histogram of the data is as shown above 
in histogram B. 

SELECT (C) A random sample of 35 circuit boards is tested; the histogram of the data is as shown above 
in histogram C. 

SELECT (D) A random sample of 9 circuit boards is tested; the histogram of the data is as shown above 
in histogram D. 



LEARN BY DOING: State the Hypotheses for a test for a population mean 

A research study measured the pulse rates of 57 college men and found a mean pulse rate of 70 
beats per minute with a standard deviation of 9.85 beats per minute.  

Researchers want to know if the mean pulse rate for all college men is different from the current 
standard of 72 beats per minute. 

The null and alternative hypotheses in this case are:

SELECT (A) Ho: μ = 70, and Ha: μ < 70 

SELECT (B) Ho: μ = 72, and Ha: μ < 72 

SELECT (C) Ho: μ = 70, and Ha: μ > 70 

SELECT (D) Ho: μ = 72, and Ha: μ > 72 

SELECT (E) Ho: μ = 70, and Ha: μ ≠ 70 

SELECT (F) Ho: μ = 72, and Ha: μ ≠ 72 



LEARN BY DOING: Checking Conditions for Hypothesis Testing for the Population Mean 

The purpose of this activity is to discuss how in some cases exploratory data analysis can help you 
determine whether the conditions that allow us to use the t-test for the population mean (μ) are met. 

Background: 

• In the Exploratory Data Analysis unit, we stressed that in general, it is always a good idea to look at
your data (if the actual data are given).

• Moreover, related to our discussion now, looking at the data can be very helpful when trying to
determine whether you can reliably use the test.

• Often in courses, data summaries (sample size, sample mean) are given rather than the raw data.
We must trust what we are told in the problem. In practice, you often work with the raw data.

Now imagine the following situation: 

• A health educator at a small college wants to determine whether the exercise habits of male
students in the college are similar to the exercise habits of male college students in general.

• The educator chooses a random sample of 20 male students and records the time they spend
exercising in a typical week.

• Do the data provide evidence that the mean time male students in the college spend exercising in a
typical week differs from the mean time for male college students in general (which is 8 hours)?

NOTE: Whether σ is known or not is really not relevant to this activity. 

Here is a situation in which we do not have any information about whether the variable of interest, 
"time" (time spent exercising in a typical week) varies normally or not, and the sample size (n = 20) is 
not really large enough for us to be certain that the Central Limit Theorem applies.  

Recall from our discussion on the Central Limit Theorem that unless the distribution of "time" is 
extremely skewed and/or has extreme outliers, a sample of size 20 should be fine. 

However, how can we be sure that is, indeed, the case? 

• If only the data summaries are given, there is really not a lot that can be done. You can say
something like: "I'll proceed with the test assuming that the distribution of the variable "time" is
not extremely skewed and does not have extreme outliers."



• If the actual data are given, you can make a more informed decision by looking at the data using a
histogram. Even though the histogram of a sample of size 20 will not paint the exact picture of
how the variable is distributed in the population, it could give a rough idea.

Now we will look at a few different samples representing data in this scenario.  

The data are available if you wish to create the graphs yourself but we also provide the graphs directly if 
you wish to skip analyzing the data yourself for this activity.  

• DATA: EXCEL format, CSV format

• OUTPUT: GRAPHS (PDF)

For each sample, view the histogram and QQ-plot (or create them yourself). Comment on whether you 
think it would be safe to proceed with the test had those been the actual data in the problem above. 

CHECK ANSWER 

http://media.news.health.ufl.edu/misc/bolt/Intro/files/unit4/UNIT4A/time.xls
http://media.news.health.ufl.edu/misc/bolt/Intro/files/unit4/UNIT4A/time.csv
http://media.news.health.ufl.edu/misc/bolt/Intro/files/unit4/UNIT4A/0417LBD_ONESAMPTSTEP2A.pdf


LEARN BY DOING: Calculate the Test Statistic for a Test for a Population Mean 

Normal body temperature for healthy, at-rest human beings has always been said to be 98.6°F. 

A doctor has seen a lot of patients who had a lower or higher body temperature when they were not ill. 

So, he collected 50 randomly selected temperatures that had a mean of 98.4°F with a standard deviation 
of 0.35°F and wants to test the hypotheses.  

• Ho: μ = 98.6

• Ha: μ ≠ 98.6

Calculate the test statistic for this sample. 

SELECT (A) -0.34 

SELECT (B) -0.57 

SELECT (C) -2.39 

SELECT (D) -4.04 

SELECT (E) 4.04 



LEARN BY DOING: Hypothesis Testing for the Population Mean 

The purpose of this activity is to give you guided practice in the process of a t-test for the population 
mean. 

Background: 

A group of 75 college students from a certain liberal arts college were randomly sampled and asked 
about the number of alcoholic drinks they have in a typical week. The file containing the data is linked 
below. The purpose of this study was to compare the drinking habits of the students at the college to 
the drinking habits of college students in general.  

In particular, the dean of students, who initiated this study, would like to check whether the mean 
number of alcoholic drinks that students at his college have in a typical week differs from the mean of 
U.S. college students in general, which is estimated to be 4.73. 

Let μ be the mean number of alcoholic beverages that students in THIS college drink in a typical week. 

Answer the following questions using this SPSS OUTPUT (PDF), SAS OUTPUT (PDF), this SAS CODE 

The raw data are also provided if you are interested in looking at it yourself: EXCEL or CSV 

http://media.news.health.ufl.edu/misc/bolt/Intro/files/unit4/UNIT4A/0417LBD_ONESAMPMEANFULL.pdf
http://media.news.health.ufl.edu/misc/bolt/Intro/files/unit4/UNIT4A/0417LBD_ONESAMPMEANFULL_SAS.pdf
http://media.news.health.ufl.edu/misc/bolt/Intro/files/unit4/UNIT4A/0417LBD_ONESAMPMEANFULL_SASCODE.sas
http://media.news.health.ufl.edu/misc/bolt/Intro/files/unit4/UNIT4A/drinks.xls
http://media.news.health.ufl.edu/misc/bolt/Intro/files/unit4/UNIT4A/drinks.csv


LEARN BY DOING: Hypothesis Testing for the Population Mean 

The purpose of this activity is to give you guided practice in the process of a t-test for the population 
mean. 

Background: 

A group of 75 college students from a certain liberal arts college were randomly sampled and asked 
about the number of alcoholic drinks they have in a typical week. The file containing the data is linked 
below. The purpose of this study was to compare the drinking habits of the students at the college to 
the drinking habits of college students in general.  

In particular, the dean of students, who initiated this study, would like to check whether the mean 
number of alcoholic drinks that students at his college have in a typical week differs from the mean of 
U.S. college students in general, which is estimated to be 4.73. 

Let μ be the mean number of alcoholic beverages that students in THIS college drink in a typical week. 

QUESTION 1: 

State the hypotheses that are being tested in this problem. 

CHECK ANSWER 

QUESTION 2: 

a. Look at the data using a histogram and describe the shape of the distribution.

b. Why are the conditions allowing us to safely use the t-test are met regardless of your findings in (a)?

CHECK ANSWER 

QUESTION 3: 

State the test statistic, interpret its value and show how it was found. 

CHECK ANSWER 

QUESTION 4: 

Based on the p-value, draw your conclusions in context. 

CHECK ANSWER 



QUESTION 5: 

What would your conclusions be if the dean of students suspected that the mean number of alcoholic 
drinks that students in the college consume in a typical week is lower than the mean of U.S. college 
students in general? In other words, if this were a test of the hypotheses: 

H0: μ = 4.73 drinks per week 

Ha: μ < 4.73 drinks per week 

 HINT 

CHECK ANSWER 

QUESTION 6: 

Now suppose that instead of the 75 students having been randomly selected from the entire student 
body, the 75 students had been randomly selected only from the engineering classes at the college (for 
the sake of convenience). 

Address the following two issues regarding the effect of such a change in the study design: 

a. Would we still be mathematically justified in using the t-test for obtaining conclusions, as we did
previously? 

b. Would the resulting conclusions still address the question of interest (which, remember, was to
investigate the drinking habits of the students at the college as whole)? 

CHECK ANSWER 
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