
 1

Basic and Advanced Graphics in R

Histograms and Kernel Density Estimates
> names(City) # lists variables that make up data set
[1] "pop1" "pop2" "growth" "area" "popdens" "black.pop" "hisp.pop" "AIP.pop"

[9] "pct.black" "pct.hisp" "pct.AIP" "pctenr" "pctdeg" "pctold" "income" "taxes"

[17] "welfare" "poverty" "pct1par" "unemprt" "laborchg" "femlab" "pctmanu" "ptrans"

[25] "medv" "medrent" "pctrent" "oldhous" "pctcondo" "pct1hous" "infmort" "crime"

[33] "july" "precip"

> attach(City) # loads data set so variables can be referenced by name
> hist(income,prob=T,nclass=20,col = “blue”,main="Histogram of Median

Income")

prob =T gives a probability histogram, nclass = 20 specifies that we wish to use approximately

20 class intervals to construct the histogram, col=”blue” specifies that we wish to have the bars of

colored blue, and main=”Histogram …” specifies a title for the plot. All of these are optional

arguments that do not necessarily need to included. To see what other options are available a general help

file for given command can be obtained if we type ? immediately followed by the name of the command.

For example > ?hist will bring up the help file for this histogram function.

> lines(density(income)) # lines is a general command for adding a line to the current plot. It

requires some mechanism for generating the line. Here we have used a kernel density estimate which is

essentially a smoothed histogram.

Scatterplots
> plot(poverty,infmort,xlab="Percent Below Poverty Level",ylab="Infant

Mortality Rate")

> lines(lowess(poverty,infmort)) # add loess smooth to plot

> abline(lm(infmort~poverty),lty=2) # add a OLS fit and use a dashed line which is

obtained by using the optional argument lty = 2 which means use line type 2

> identify(poverty,infmort,labels=row.names(City)) # interactively identify some

observations

[1] 19 44 33 9 these are the observation numbers that were highlighted.

> title(main="Infant Mortality vs. Poverty Level") # add a title to the final plot

 2

Comparative Boxplots
> attach(Olives)

> par(mfrow=c(3,2)) # sets a plotting region for with 3 rows and 2

columns

> boxplot(split(oleic,Area.name),xlab="Area",ylab="Oleic Acid")

> boxplot(split(linoleic,Area.name),xlab="Area",ylab="Linoleic Acid")

> boxplot(split(strearic,Area.name),xlab="Area",ylab="Strearic Acid")

> boxplot(split(linolenic,Area.name),xlab="Area",ylab="Linolenic Acid")

> boxplot(split(eicosanoic,Area.name),xlab="Area",ylab="Eicosanoic

Acid")

> boxplot(split(eicosenoic,Area.name),xlab="Area",ylab="Eicosenoic

Acid")

Note that the basic form of the command is boxplot(split(variable,pop_identifier))

I have written function which produces comparative boxplots along with normal quantile

plots on the side much like those that can obtained in JMP called boxqq. An example

 3

of its use is shown below.
> boxqq(oleic~Region.name)

statplot

This function returns four univariate displays for continuous data (histogram,

boxplot,symmetry plot, and a normal quantile plot).

> statplot(linoleic)

 4

Scatterplot matrices

> olive.mat <- cbind(linoleic,oleic,strearic,palmitic) # forms a matrix with

these four acid levels forming the columns.
> pairs(olive.mat) # basic function call, nothing fancy.

We can create higher level plots by adding additional features to the scatterplot matrix. The function

pairs.trendsd is shown below. It adds a lowess smooth with +/- SD lines, histograms for the variables, and

pairwise correlations using magnitude to control font size.
> pairs.trendsd <- function(data,...) {

pairs(data,lower.panel=panel.cor,upper.panel=panel.trendsd,diag.panel=p

anel.hist,...)

}

> pairs.trendsd(cbind(oleic,strearic,linoleic))

 5

Coplots or Trellised Graphs (library(lattice))

We can create higher level scatterplot matrices using the splom command from the lattice

library. The lattice contains numerous functions that allow for the creation of conditional

plots or coplots. Conditional plots are basic plots like scatterplots, boxplots, histograms,

etc. that are constructed separately for each level of a categorical factor. Some examples

of conditional plots are shown below.

The next few examples use Fisher’s iris data which looks at four different flower

measurements made on samples of three different iris species, Setosa, Versicolor, and

Virginica.

> data(iris)

> attach(iris)

> names(iris)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

> library(lattice) # load this package from CRAN or copy of the class server.

A basic trellis display can be plotting two characteristics, sepal length vs. petal length

here, conditional on iris species. Trellis displays are created by using a formula to

describe the form of conditioning plot. The formula is generally of the form 'y ~ x | g1 *

g2 * ...' indicating that plots of 'y' (on the y axis) versus 'x' (on the x axis) should be

produced conditional on the variables 'g1, g2, ...'. However, the conditioning variables

'g1,g2,...' may be omitted. The conditioning variables 'g1, g2, ...' must be either

 factors or shingles (Shingles are a way of processing numeric variables for use in

conditioning. See documentation of shingle for details. Like factors, they have a `levels'

attribute, which is used in producing the conditioning plots). For each unique

combination of the levels of the conditioning variables 'g1, g2, ...', a separate panel is

produced using the points '(x,y)' for the subset of the data defined by that combination.

Numeric conditioning variables are converted to shingles by the function shingle

however, using equal.count might be more appropriate in many cases, and character

vectors are coerced to factors.

> xyplot(Sepal.Length ~ Petal.Length|Species)

The panel option can be used to specify different plot features that can be added to each

panel in the trellis display. In the example below we add a loess smooth with span = .75

to each panel and plot data points using blue for the color.
> xyplot(Sepal.Length ~ Petal.Length|Species,panel=function(x,y,...){
+ panel.loess(x,y,span=.75)

+ panel.xyplot(x,y,col="blue")})

 6

We can condition on a continuous variate by using equal.count to create shingles.
> SepWid <- equal.count(Sepal.Width)

> plot(SepWid)

> print(SepWid)

Intervals:

 min max count

1 1.95 2.85 47

2 2.55 3.05 64

3 2.75 3.15 61

4 2.95 3.25 50

5 3.05 3.55 48

6 3.25 4.25 42

Overlap between adjacent intervals:

[1] 28 50 37 24 24

> xyplot(Sepal.Length ~ Petal.Length|SepWid)

A much fancier version uses different plotting symbols for each iris species, adds a title

and key.
> xyplot(Sepal.Length ~ Petal.Length|SepWid,groups=Species,panel=panel.superpose,
+ key=list(title="Sepal Length vs. Petal Length | Sepal Width",

+ columns=3,points=list(pch=super.sym$pch[1:3],col=super.sym$col[1:3]),

+ text=list(levels(Species)),cex=.7))

 7

Scatterplot Matrix with Points Color-Coded by a Grouping Variable with Key
> splom(~iris[1:4],groups=Species,panel=panel.superpose,

+ key=list(title="Iris Species", columns=3,

+ points=list(pch=super.sym$pch[1:3],col=super.sym$col[1:3]),

+ text=list(levels(Species))))

The key portion of the command is setting up a legend at the top of the scatterplot

matrix. The panel.superpose function says to use different colored plotting symbols

for each species.

Boxplots

Basic Form: bwplot(GROUP ~ VARIATE)

> bwplot(Species~Sepal.Width,data=iris,xlab="Sepal Width

(mm)",main="Boxplots of Iris Sepal Width")

 8

Strip Plots

Basic Form: stripplot(GROUP ~ VARIATE)

stripplot(Species ~ jitter(Sepal.Width), data = iris, aspect = 1,

jitter=T,xlab="Sepal Width (mm)",main="Sepal Width Across Species")

Another function that can be used to create conditional plots is the coplot function that

is part of the R base package. Here are some examples of its use, again we start with

Fisher’s iris data.

> coplot(Sepal.Width~Sepal.Length|Species)

 9

> coplot(Sepal.Width~Sepal.Length|Petal.Width,number=4,overlap=.2)

>coplot(Sepal.Width~Sepal.Length|Petal.Width*Petal.Length,number=c(3,3)

,overlap=.5,col=as.numeric(Species),pch=as.numeric(Species)+1)

In this last example different plotting symbols and colors are used to denote the iris

species.

As last example we consider ozone concentration data from the Los Angeles Basin. The

data is contained in the data frame Ozdata.
> names(Ozdata)
 [1] "day" "v500" "wind" "hum" "safb" "inbh" "dagg" "inbt" "vis" "upoz"

> attach(Ozdata)

 10

> coplot(upoz~safb|inbh*v500,panel=panel.smooth)

> coplot(upoz~safb|inbh*v500,number=c(4,4),panel=panel.smooth)
> coplot(upoz~safb|inbh*v500,number=c(4,4),overlap=.25,

+ panel=function(x,y,...) panel.smooth(x,y,span=.6,...))

End Coplots/Trellised Graphics

Mores Density Estimates (library(ash))

The ash library contains functions for computing 1-dimensional and 2-dimensional

density estimates using the average shifted histograms. Below you will find a couple of

examples of their use. The examples use data from study of the differences between

genuine and forged Swiss Francs. The variables represent different dimensional

measurements made on the francs. There 100 genuine and 100 forged Swiss francs in the

data set. Clearly interest would center on finding an easy way to distinguish forged bills

from genuine bills. A few of the previously introduced functions will be demonstrated in

this example as well.

1-D ASH estimates
> d1 <- ash1(bin1(diagon,nbin=50),3)

> hist(diagon,nclass=20,prob=T,col="blue",main="Histogram of Bill

Diagonal (mm)")

 11

> lines(d1)

> statplot(diagon,xname="Image Diagonal")

2-D Density Estimate Viewed as Wire Frame Surface
> diagrt.bin <- bin2(cbind(diagon,right),nbin=c(50,50))

> diagrt.1 <- ash2(diagrt.bin,m=c(5,5))

> persp(diagrt.1,xlab="Diagonal Length",ylab="Right

Height",zlab="",cex=.5,theta=-45,phi=30,shade=1,col="royal blue")

 12

2-D Density Estimate Viewed as Image/Contour Map
> image(diagrt.1,xlab="Bill Diagonal",ylab="Right Height")

> contour(diagrt.1,xlab="Bill Diagonal",ylab="Right Height",add=T)

> points(diagon,right,pch=as.character(genu),cex=.4)

Trellis Display
> Genuine <- genu

> xyplot(diagon~bottom|Genuine,groups=genu)

> Genuine[genu==0] <- "Forged"

> Genuine[genu==1] <- "Real"

> xyplot(diagon~bottom|Genuine,groups=genu)

Scatterplot Matrix Using splom

splom(~Swiss[,2:7],groups=Genuine,cex=.6,panel=panel.superpose,

+ key=list(title="Swiss Francs",columns=2,

+ points=list(pch=super.sym$pch[1:2],col=super.sym$col[1:2]),

+ text=list(unique(Genuine))))

 13

Using Panel Functions with the Standard Scatterplot Matrix Command pairs

> pairs.image <- function(x) {

pairs(x,panel=function(x,y) {

foo <- bin2(cbind(x,y),nbin=c(75,75))

foo <- ash2(foo,m=c(6,6))

image(foo,add=T,xlab="",ylab="",col=topo.colors(1000))

points(x,y,pch=".")

})

}

> pairs.image(Swiss[,2:7])

 14

> pairs.persp <- function(x) {

par(bg="sky blue")

pairs(x,panel=function(x,y) {

foo <- bin2(cbind(x,y),nbin=c(75,75))

foo <- ash2(foo,m=c(8,8))

par(new=T)

persp(foo,xlab="",ylab="",theta=-45,phi=35,col="royal blue",

shade=.75,box=F,scale=F,border=NA,expand=.9)

})

par(new=F,bg="white")

}

> pairs.persp(cbind(leng,left,right))

