Abstract We propose a management strategy for acute cholangitis and cholecystitis according to the severity assessment. For Grade I (mild) acute cholangitis, initial medical treatment including the use of antimicrobial agents may be sufficient for most cases. For non-responders to initial medical treatment, biliary drainage should be considered. For Grade II (moderate) acute cholangitis, early biliary drainage should be performed along with the administration of antibiotics. For Grade III (severe) acute cholangitis, appropriate organ support is required. After hemodynamic stabilization has been achieved, urgent endoscopic or percutaneous transhepatic biliary drainage should be performed. In patients with Grade II (moderate) and Grade III (severe) acute cholangitis, treatment for the underlying etiology including endoscopic, percutaneous, or surgical treatment should be performed after the patient’s general condition has been improved. In patients with Grade I (mild) acute cholangitis, treatment for etiology such as endoscopic sphincterotomy for choledocholithiasis might be performed simultaneously, if possible, with biliary drainage. Early laparoscopic cholecystectomy is the first-line treatment in patients with Grade I (mild) acute
cholecystitis while in patients with Grade II (moderate) acute cholecystitis, delayed/elective laparoscopic cholecystectomy after initial medical treatment with antimicrobial agent is the first-line treatment. In non-responders to initial medical treatment, gallbladder drainage should be considered. In patients with Grade III (severe) acute cholecystitis, appropriate organ support in addition to initial medical treatment is necessary. Urgent or early gallbladder drainage is recommended. Elective cholecystectomy can be performed after the improvement of the acute inflammatory process.

Keywords Acute cholangitis · Acute cholecystitis · Biliary drainage · Laparoscopic cholecystectomy · Guidelines

Introduction

This article describes strategies for the management of acute cholangitis and cholecystitis including initial medical treatment flowcharts. We established a flowchart for the diagnosis and treatment of acute cholangitis and cholecystitis as reported in the Tokyo Guidelines 2007 [1]. Flowcharts for the management of acute cholangitis and cholecystitis have been revised in the updated Tokyo Guidelines (TG13).

We consider that the primary purpose of the flowcharts is to allow clinicians to grasp, at a glance, the outline of the management strategy of the disease. Flowcharts have been colored for easy access and rapid understanding, and most of the treatment methods are included in the flowcharts to achieve their primary purpose.

Y. Kimura
Department of Surgical Oncology and Gastroenterological Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan

R. Higuchi
Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan

Y. Yamashita
Department of Gastroenterological Surgery, Fukuoka University School of Medicine, Fukuoka, Japan

J. A. Windsor
Department of Surgery, The University of Auckland, Auckland, New Zealand

T. Tsuyuguchi
Department of Medicine and Clinical Oncology, Graduate School of Medicine Chiba University, Chiba, Japan

T. Gabata
Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan

T. Itoi
Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan

J. Hata
Department of Endoscopy and Ultrasound, Kawasaki Medical School, Okayama, Japan

K.-H. Liau
Hepatobiliary and Pancreatic Surgery, Nexus Surgical Associates, Mount Elizabeth Hospital, Singapore, Singapore

Springer
diseases such as gallstones, previous biliary procedures, or the placement of a biliary stent is very helpful when a diagnosis of acute cholangitis is suspected [1].

Blood test

The diagnosis of acute cholangitis requires the measurement of white blood cell count, C-reactive protein, and liver function test including alkaline phosphatase, GGT, AST, ALT, and bilirubin [8]. The assessment of the severity of the illness requires knowledge of the platelet count, blood urea nitrogen, creatinine, prothrombin time-international normalized ratio (PT-INR), albumin, and arterial blood gas analysis. Blood cultures are also helpful for selection of antimicrobial drugs [8–10]. Hyperamylasemia is a useful parameter for identifying complications such as choledocholithiasis causing biliary pancreatitis [11].

Diagnostic imaging

Abdominal ultrasound (US) and abdominal computerized tomography (CT) with intravenous contrast are very useful test procedures for evaluating patients with acute biliary tract disease. Abdominal US should be performed in all patients with suspected acute biliary inflammation/infection [1]. Ultrasonic examination has satisfactory diagnostic capabilities when performed not only by specialists but also by emergency physicians [12, 13]. The role of diagnostic imaging in acute cholangitis is to determine the presence of biliary obstruction, the level of obstruction, and the cause of the obstruction such as gallstones and/or biliary strictures [1]. The assessment should include US and CT. These studies complement each other and CT may yield better imaging of bile duct dilatation and pneumobilia.

Differential diagnosis

Diseases which should be differentiated from acute cholangitis are acute cholecystitis, liver abscess, gastric and duodenal ulcer, acute pancreatitis, acute hepatitis, and septicemia from other origins.

Q1. What is the initial medical treatment of acute cholangitis?

| On condition that biliary drainage is conducted during hospital stay as a rule, sufficient infusion, electrolyte correction, and antimicrobial and analgesic administration take place while fasting (recommendation 1, level C). |

Early treatment, while fasting as a rule, includes sufficient infusion, the administration of antimicrobial and analgesic agents, along with the monitoring of respiratory hemodynamic conditions in preparation for emergency drainage [1].

When acute cholangitis has become more severe, that is, if any one of the following signs is observed such as shock (reduced blood pressure), consciousness disturbance, acute lung injury, acute renal injury, hepatic injury, and disseminated intravascular coagulation (DIC) (decreased platelet count), emergency biliary drainage is carried out together with appropriate organ support (sufficient infusion and anti-microbial administration), and respiratory and circulatory management (artificial respiration, intubation, and use of vasopressors) [1].

Q2. Should the severe sepsis bundle be referred to for the early treatment of acute cholangitis accompanying severe sepsis?

| The severe sepsis bundle should be referred to for the early treatment of acute cholangitis accompanying severe sepsis (recommendation 1, level B). |

Acute cholangitis is frequently accompanied by sepsis. As for the early treatment of severe sepsis, there is a detailed description in “Surviving Sepsis Campaign Guidelines (SSCG)” published in 2004 and updated in 2008. To improve treatment results, a severe sepsis bundle (Table 1, http://www.ksi.org/knowledge/Pages/Changes/ImplementEffectiveGlucoseControl.aspx) has been presented in SSCG as the core part of the treatment for septic shock. However, there are reports of validation by several multi-institutional collaborative studies that have found a significant decrease in mortality rate in patients with a higher rate of compliance [14] or after the implementation of the severe sepsis bundle [15–17]. These studies include severe sepsis cases induced by a disease other than acute cholangitis [14–17]. However, the severe sepsis bundle should be referred to for the early treatment of acute cholangitis accompanying severe sepsis.

Flowchart for the management of acute cholangitis

A flowchart for the management of acute cholangitis is shown in Fig. 2. Treatment of acute cholangitis should be performed according to the severity grade of the patient. Biliary drainage and antimicrobial therapy are the two most important elements of treatment. When a diagnosis of acute cholangitis is determined based on the diagnostic criteria of
acute cholangitis of TG13 [9], initial medical treatment including nil per os (NPO), intravenous fluid, antimicrobial therapy, and analgesia together with close monitoring of blood pressure, pulse, and urinary output should be initiated. Simultaneously, severity assessment of acute cholangitis should be conducted based on the severity assessment criteria for acute cholangitis of TG 13 [9] in which acute cholangitis is classified into Grade I (mild), Grade II (moderate), or Grade III (severe). Frequent reassessment is mandatory and patients may need to be reclassified into Grade I, II, or III based on the response to initial medical treatment. Appropriate treatment should be performed in accordance with the severity grade. Patients with acute cholangitis sometimes suffer simultaneously from acute cholecystitis. A treatment strategy for patients with both acute cholangitis and cholecystitis should be determined in consideration of the severity of those diseases and the surgical risk in patients.

Grade I (mild) acute cholangitis

Initial medical treatment including antimicrobial therapy may be sufficient. Biliary drainage is not required for most cases. However, for non-responders to initial medical treatment, biliary drainage should be considered. Endoscopic, percutaneous, or operative intervention for the etiology of acute cholangitis such as choledocholithiasis and pancreato-biliary malignancy may be performed after pre-intervention work-up. Treatment for etiology such as endoscopic sphincterotomy for choledocholithiasis might be performed simultaneously, if possible, with biliary drainage. Some patients who have

Table 1

<table>
<thead>
<tr>
<th>Severe sepsis bundle, quoted from http://www.survivingsepsis.org/Bundles/Pages/default.aspx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepsis resuscitation bundle
Tasks that should start immediately but must be performed within 6 h in patients with severe sepsis or septic shock:</td>
</tr>
<tr>
<td>1. Measure serum lactate.</td>
</tr>
<tr>
<td>2. Obtain blood cultures prior to antibiotic administration.</td>
</tr>
<tr>
<td>3. Administer broad-spectrum antibiotics within 3 h after admission to the emergency department (ED) and within 1 h after admission to the department other than ED.</td>
</tr>
<tr>
<td>4. In the event of hypotension and/or serum lactate >4 mmol/L:
a. Deliver the initial minimum of 20 mL/kg of crystalloid or the equivalent.</td>
</tr>
<tr>
<td>b. Apply vasopressors for hypotension showing no response to initial fluid resuscitation in order to maintain the mean arterial pressure (MAP) >65 mmHg.</td>
</tr>
<tr>
<td>5. In the event of persistent hypotension despite fluid resuscitation (septic shock) and/or lactate >4 mmol/L:
a. Achieve central venous pressure (CVP) of >8 mmHg.</td>
</tr>
<tr>
<td>b. Achieve central venous oxygen saturation (ScvO2) >70 % or mixed venous oxygen saturation (SvO2) >65 %.</td>
</tr>
</tbody>
</table>

| **Sepsis management bundle**
Tasks that should be initiated immediately but must be carried out within 24 h in patients with severe sepsis or septic shock: |
| 1. Administer low-dose steroids for septic shock in accordance with the standardized ICU policy. If not administered, document why the patient did not qualify for low-dose steroids based upon the standardized protocol. |
| 2. Administer recombinant human activated protein C (rhAPC) in accordance with the standardized ICU policy. If not administered, document why the patient did not qualify for rhAPC. |
| 3. Maintain glucose control <180 mg/dL. |
| 4. Maintain the median inspiratory plateau pressure (IPP) <30 cmH2O in patients on mechanical ventilation. |

Fig. 2

Flowchart for the management of acute cholangitis: TG13

Diagnosis and Severity Assessment by TG13 Guidelines

- **Grade I (Mild)**
 - Antibiotics and General Supportive Care
 - Finish course of antibiotics
 - Biliary Drainage

- **Grade II (Moderate)**
 - Early Biliary Drainage
 - Antibiotics General Supportive Care

- **Grade III (Severe)**
 - Urgent Biliary Drainage
 - Organ Support Antibiotics

Treatment According to Grade, According to Response, and According to Need for Additional Therapy

- **Treatment for etiology**
 - if still needed
 - (Endoscopic treatment, percutaneous treatment, or surgery)

※ Performance of a blood culture should be taken into consideration before initiation of administration of antibiotics. A bile culture should be performed during biliary drainage.

† Principle of treatment for acute cholangitis consists of antimicrobial administration and biliary drainage including treatment for etiology. For patient with choledocholithiasis, treatment for etiology might be performed simultaneously, if possible, with biliary drainage.
developed postoperative cholangitis may require antimicrobial therapy only and generally do not require intervention.

Grade II (moderate) acute cholangitis

Early endoscopic or percutaneous drainage, or even emergency operative drainage with a T-tube, should be performed in patients with Grade II acute cholangitis. A definitive procedure should be performed to remove a cause of acute cholangitis after the patient’s general condition has improved and following pre-intervention work-up.

Grade III (severe) acute cholangitis

Patients with acute cholangitis accompanied by organ failure are classified as Grade III (severe) acute cholangitis. These patients require appropriate organ support such as ventilatory/circulatory management (non-invasive/invasive positive pressure ventilation and use of vasopressor, etc.). Urgent biliary drainage should be anticipated. When patients are stabilized with initial medical treatment and organ support, urgent (as soon as possible) endoscopic or percutaneous transhepatic biliary drainage or, according to the circumstances, an emergency operation with decompression of the bile duct with a T-tube should be performed. Definitive treatment for the cause of acute cholangitis including endoscopic, percutaneous, or operative intervention should be considered once the acute illness has resolved.

General guidance for the management of acute cholecystitis

The general guidance for the management of acute biliary inflammation/infection including acute cholecystitis is presented in Fig. 1.

Clinical presentations

Clinical symptoms of acute cholecystitis include abdominal pain (right upper abdominal pain), nausea, vomiting, and pyrexia [18–20]. The most typical symptom is right epigastric pain. Tenderness in the right upper abdomen, a palpable gallbladder, and Murphy’s sign are the characteristic findings of acute cholecystitis. A positive Murphy’s sign shows 79–96 % specificity [18, 20] for acute cholecystitis.

Blood test

There is no specific blood test for acute cholecystitis; however, the measurement of white blood cell count and C-reactive protein is very useful in confirming an inflammatory response [21]. The platelet count, bilirubin, blood urea nitrogen, creatinine, prothrombin time-international normalized ratio (PT-INR), and arterial blood gas analysis are useful in assessing the severity status of the patient [21].

Diagnostic imaging

Abdominal ultrasound (US) and abdominal computerized tomography (CT) with intravenous contrast are very helpful procedures for evaluating patients with acute biliary tract disease. Abdominal US should be performed in every patient with suspected acute biliary inflammation/infection [1]. Ultrasonic examination has satisfactory diagnostic capability when it is performed not only by specialists but also by emergency physicians [12, 13]. Characteristic findings of acute cholecystitis include the enlarged gallbladder, thickened gallbladder wall, gallbladder stones and/or debris in the gallbladder, sonographic Murphy’s sign, pericholecystic fluid, and pericholecystic abscess [21]. Sonographic Murphy’s sign is a reliable finding of acute cholecystitis showing about 90 % sensitivity and specificity [22, 23], which is higher than those of Murphy’s sign.

Differential diagnosis

Diseases which should be differentiated from acute cholecystitis are gastric and duodenal ulcer, hepatitis, pancreatitis, gallbladder cancer, hepatic abscess, Fitz-Hugh–Curtis syndrome, right lower lobar pneumonia, angina pectoris, myocardial infarction, and urinary infection.

Q3. What is the initial medical treatment of acute cholecystitis?

While considering indications for surgery and emergency drainage, sufficient infusion and electrolyte correction take place, and antimicrobial and analgesic agents are administered while fasting continuing the monitoring of respiratory and hemodynamics (recommendation 1, level C).

Early treatment, with fasting as a rule, includes sufficient infusion, the administration of antimicrobial and analgesic agents, along with the monitoring of respiratory hemodynamics in preparation for emergency surgery and drainage [1].

When any one of the following morbidities is observed: further aggravation of acute cholecystitis, shock (reduced blood pressure), consciousness disturbance, acute respiratory injury, acute renal injury, hepatic injury, and DIC (reduced platelet count), then appropriate organ support
(sufficient infusion and antimicrobial administration), and respiratory and circulatory management (artificial respiration, intubation, and use of vasopressors) are carried out together with emergency drainage or cholecystectomy [1].

There are many reports showing that remission can be achieved by conservative treatment only [24-26]. On the other hand, there is a report demonstrating that mild cases may not require antimicrobial agents; however, prophylactic administration should take place due to possible complications such as bacterial infection. Furthermore, there is a report that was unable to detect a difference in the positive rate of sonographic Murphy’s sign depending on the presence or absence of the use of analgesic agents [27]. The administration of analgesic agents should therefore be initiated in the early stage.

CQ4. Is the administration of NSAID for the attack of impacted stones gallstone attack effective for preventing acute cholecystitis?

| NSAID administration is effective for impacted gallstone attack for preventing acute cholecystitis (recommendation 1, level A). |

Administration of non-steroidal anti-inflammatory drugs (NSAIDs) for gallstone attack is effective in preventing acute cholecystitis, and they are also widely known as analgesic agents. A NSAID such as diclofenac is thus used for early treatment. According to a report of a double blind randomized controlled trial (RCT) that compared the use of NSAIDs (diclofenac 75 mg intramuscular injection) with placebo [28] or hyoscine 20 mg intramuscular injection [29] for cases of impacted gallstone attack, NSAIDs prevented progression of the disease to acute cholecystitis and also reduced pain. Although NSAIDs have been effective for the improvement of gallbladder function in cases with chronic cholecystitis, there is no report showing that the administration of NSAIDs has contributed to improving the course of cholecystitis after its acute onset [30].

Flowchart for the management of acute cholecystitis

A flowchart for the management of acute cholecystitis is shown in Fig. 3. The first-line treatment of acute cholecystitis is early or urgent cholecystectomy, with laparoscopic cholecystectomy as a preferred method. In high-risk patients, gallbladder drainage such as percutaneous transhepatic gallbladder drainage (PTGBD), percutaneous transhepatic gallbladder aspiration (PTGBA), and endoscopic nasobiliary gallbladder drainage (ENGBD) is an alternative therapy in patients who cannot safely undergo urgent/early cholecystectomy [31, 32]. When a diagnosis of acute cholecystitis is determined based on the diagnostic criteria of acute cholecystitis in TG13 [33], initial medical treatment including NPO, intravenous fluids, antibiotics, and analgesia, together with close monitoring of blood pressure, pulse, and urinary output should be initiated. Simultaneously, severity assessment of acute cholecystitis should be conducted based on the severity assessment criteria for the acute cholecystitis of TG13 [33], in which acute cholecystitis is classified into Grade I (mild), Grade II (moderate), or Grade III (severe). Assessment of the operative risk for comorbidities and the patient’s general status should also be evaluated in addition to the severity grade.

After resolution of acute inflammation with medical treatment and gallbladder drainage, it is desirable that cholecystectomy is performed to prevent recurrence. In surgically high-risk patients with cholecystolithiasis, medical support after percutaneous cholecystolithotomy should be considered [34-36]. In patients with acalculous cholecystitis, cholecystectomy is not always required since recurrence of acute acalculous cholecystitis after gallbladder drainage is rare [31, 37].

Grade I (mild) acute cholecystitis

Early laparoscopic cholecystectomy is the first-line treatment. In patients with surgical risk, observation (follow-up without cholecystectomy) after improvement with initial medical treatment could be indicated.

Grade II (moderate) acute cholecystitis

Grade II (moderate) acute cholecystitis is often accompanied by severe local inflammation. Therefore, surgeons should take the difficulty of cholecystectomy into consideration in selecting a treatment method. Elective cholecystectomy after the improvement of the acute inflammatory process is the first-line treatment. If a patient does not respond to initial medical treatment, urgent or early gallbladder drainage is required. Early laparoscopic cholecystectomy could be indicated if advanced laparoscopic techniques are available. Grade II (moderate) acute cholecystitis with serious local complications is an indication for urgent cholecystectomy and drainage.

Grade III (severe) acute cholecystitis

Grade III (severe) acute cholecystitis is accompanied by organ dysfunction. Appropriate organ support such as ventilatory/circulatory management (noninvasive/invasive positive pressure ventilation and use of vasopressors, etc.) in addition to initial medical treatment is necessary. Urgent or early gallbladder drainage should be performed. Elective
cholecystectomy may be performed after the improvement of acute illness has been achieved by gallbladder drainage.

Acknowledgments We would like to express our deep gratitude to the Japanese Society for Abdominal Emergency Medicine, the Japan Biliary Association, Japan Society for Surgical Infection, and the Japanese Society of Hepato-Biliary-Pancreatic Surgery, which provided us with great support and guidance in the preparation of the Guidelines.

Conflict of interest None.

References