Comparison of commercial influenza A virus assays in detecting avian influenza H7N9 among poultry cloacal swabs, China

Mai-Juan Maa,1, Xiao-Xian Yanga,1, Xian Xiaa,1, Benjamin D. Andersonb, Gary L. Heilb, Yan-Hua Qianc, Bing Luc, Wu-Chun Caoa,∗∗, Gregory C. Grayb,∗

a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
b Department of Environmental & Global Health, College of Public Health & Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
c Department of Disease Prevention and Control, Wuxi Center for Disease Control and Prevention, Wuxi 214023, PR China

** Abstract **

Background: Avian H7N9 virus emerged in China in February 2013 and has since spread widely among China’s poultry, causing numerous human infections.

Objectives: To compare World Health Organization (WHO) and US commercial influenza assays in detecting avian H7N9 virus in poultry cloacal specimens.

Study design: Between April 6 and July 15, 2013, 261 cloacal swabs were collected from commercial poultry in Nanjing and Wuxi City, Jiangsu Province, China. Swabs were screened with the WHO’s influenza A and H7N9 real-time RT-PCR (qRT-PCR) assays. A blinded panel of 97 specimens (27 H7N9-positive and 70 influenza A-negative) was then used to compare 3 antigen-based commercial assays (Remel Xpect Flu A&B, Quidel Quickvue influenza, and Quidel Sofia Influenza A+B), and 2 molecular commercial assays (Quidel Molecular Influenza A+B assay and Life Technologies VetMAXTM-Gold SIV Detection Kit). None of these commercial assays were approved for use with poultry specimens.

Results: Considering the WHO H7N9 qRT-PCR assay as the gold standard, all assays except the Quidel Quickvue influenza assay had high specificity (ranging from 96 to 99%). Regarding sensitivity, the Life Technologies VetMAXTM-Gold SIV Detection Kit (100%; 95% CI 87–100%) and the Quidel Molecular Influenza A+B assay (85%; 95% CI 66–96%) performed the best. The sensitivities of the non-molecular antigen detection assays were either unable to detect small amounts of H7N9 viral RNA or were inhibited by specimen type.

Conclusions: The Life Technologies VetMAXTM-Gold SIV Detection Kit and the Quidel Molecular Influenza A+B assay are comparable in performance to the WHO H7N9 qRT-PCR assay in detecting H7N9 from poultry cloacal specimens.

© 2014 Elsevier B.V. All rights reserved.

1. Background

Since the first detections in February 2013, avian H7N9 viruses have spread widely in China, causing at least 142 humans to be infected (33% mortality) [1–4]. Originating in Southeastern China, these viruses are now thought to be enzootic among birds in at least 12 of China’s 34 provinces [4]. Avian H7N9 viruses are unlike previous avian H5N1 influenza A threats in humans, in that they cause little symptoms among domestic poultry, and are thus difficult to detect in the environment [5]. This low pathogenicity characteristic makes outbreak preparedness more difficult as emerging subtypes can appear in humans without warning. Having available diagnostic assays, with broadly reactive detection capabilities in humans, is critical in detecting novel viruses.

While there are multiple commercial influenza A assays available and commonly used to detect influenza in humans, they have not been well-studied as tools to specifically detect H7N9. This is primarily because the virus is newly emergent, and access to H7N9-positive human samples for testing is extremely limited. However,
we reasoned that if certain commercial influenza assays were effective in detecting H7N9 virus among avian species fecal swabs, they may serve as an additional diagnostic option in H7N9 endemic areas.

2. Objectives

We sought to compare World Health Organization (WHO) and US commercial influenza assays against avian influenza A H7N9 virus in poultry cloacal specimens.

3. Study design

This study involved a first round of testing (or screening), with a goal to identify 100 specimens (30 H7N9-positive) to be used in a second round of testing, evaluating commercial assays. All assay work was performed by Chinese and US scientists at the Institute of Microbiology and Epidemiology, Beijing (BIME), which is part of the Academy of Military Medical Sciences.

3.1. Sites for specimen collection

Chinese investigators identified hot spots in Nanjing and Wuxi City, Jiangsu Province, China, where H7N9 virus or H7N9-infected patients had been previously identified. In these locations, markets or farms with active poultry operations were recruited for sampling.

3.2. Cloacal swab collection

In the field, technicians donned personal protective gear including gowns, gloves, boots, face shields, and N-95 masks (or Powered Air Purifying Respirators also called PAPRs) to collect specimens from poultry. Specimens were collected from live chickens, ducks, and pigeons. All poultry were humanely captured by hand and sampled as to minimize trauma, and then released. A sterile Dacron swab with plastic shaft was inserted approximately 1 cm into the cloaca, twisted 180° and withdrawn (<3 s). The swab was then inserted into a cryovial containing 3 ml of sterile universal transport media, the swab stem broken or cut off, and the cryovial capped.

3.3. Sample processing

Each sample was labeled and transported to the BIME laboratory in proper transport containers on ice packs or wet ice. Upon receipt in the BIME lab, all specimens were preserved at −80°C until testing could be performed. Each subsequent aliquot of the specimen to be used in the second round of testing was similarly labeled with the same accession number.

3.4. Nucleic acid extraction

RNA was extracted and purified from cloacal swabs using the QIAamp MinElute Virus Spin Kit (Cat. No. 57704, Qiagen) for the 3 molecular assays (WHO real-time RT-PCR (qRT-PCR), Quidel Molecular Influenza A+B assay, and Life Technologies VetMAX™-Gold SIV Detection Kit) by manual methods per kit instructions. To avoid prolonged exposure to elevated temperatures, purified RNA specimens were handled on wet ice and then promptly placed back at −80°C after use.

3.5. Sample testing

For the first round of testing, nucleic acid extraction was performed using 0.2 ml of volume from each specimen and screened with the WHO qRT-PCR assays for any influenza A and avian H7N9 virus [6]. The remainder of each specimen was promptly returned to storage at −80°C.

Later, WHO qRT-PCR H7N9-positive specimens and specimens negative using both the WHO qRT-PCR influenza A and H7N9 assays were selected for use in the second round of testing. This final panel of swab specimens was tested in a blinded fashion employing: Remel Xpect Flu A&B assay, Quidel Quickvue influenza assay, Quidel Sofia Influenza A+B assay, Quidel Molecular Influenza A+B assay, Life Technologies VetMAX™-Gold SIV Detection Kit, and the WHO qRT-PCR H7N9 assay (repeat testing) (Table 1). Each assay was performed according to the manufacturer’s instructions. The 3 molecular assays were run on a 7500 Real-Time PCR System platform (Life Technologies, Foster City, CA, USA). Ct values <35 were considered as positive for the Quidel Molecular A+B assay, and Ct values <38 were considered as positive for the Life Technologies VetMAX™-Gold SIV Detection Kit, and the WHO qRT-PCR assays.

3.6. Statistical analysis

Commercial assay results were compared against the second run of the WHO qRT-PCR H7N9 assay. For the sensitivity and specificity calculations (second round of testing) we ran each antigen detection assay twice and each molecular assay three times. For the antigen detection assays, if either of the two runs were positive then we considered that specimen as positive. For the molecular assays, a specimen was considered positive if at least two of the three molecular runs had Ct values <38 (≤35 for the Quidel Molecular Influenza A+B assay). Sensitivity, specificity, and confidence intervals around each parameter, were calculated using SAS v9.3 (SAS Institute, Inc., Cary, NC, USA).

4. Results

During the period April 6–July 15, 2013, study staff collected cloacal swabs from commercial poultry in Nanjing and Wuxi City, Jiangsu Province, China. With the agreement of administrators or owners, a total of 15 agriculture fair markets and 8 medium-scale farms were selected for sampling.

A total of 261 poultry cloacal swab specimens from chickens, ducks, and pigeons were collected from live birds without signs of illness. Of the 261 cloacal swab specimens initially screened, 27 were found to be H7N9-positive, which were paired with 70 random-number selected specimens that were negative by both the WHO influenza A and H7N9 assays.

There was excellent concordance between the first and second WHO H7N9 assays. The Quidel Quickvue influenza assay failed to detect any influenza A specimens among the 97 specimens in the panel and will not be further discussed. Employing the WHO H7N9 as the gold standard, the other four assays had excellent specificity, ranging from 96 to 100% (Table 2). The Life Technologies VetMAX™-Gold SIV Detection Kit had the highest sensitivity at 100% (95% CI 0.87–1.00), though 3 of the 70 WHO H7N9-negative samples tested positive, reflecting a false positive probability of 4% (95% CI 1–12%). The Quidel Molecular Influenza A+B assay had a sensitivity of 85% (95% CI 66–96%), detecting 2 of the 70 WHO H7N9-negative samples as positive; a false positive probability of 3% (95% CI 0–10%).

The VetMAX™-Gold SIV Detection Kit and the Quidel Molecular Influenza A+B assays were discrepant with the WHO H7N9 assay for 7 specimens (Table 3). Examining the discrepant specimens, both the Life Technologies VetMAX™-Gold SIV Detection Kit and the Quidel Molecular Influenza A+B assay were positive when
Table 1

Sample preparation and assay comments.

<table>
<thead>
<tr>
<th>Assay</th>
<th>Detection method</th>
<th>Time estimates* (min)</th>
<th>Aliquot treatment and testing</th>
<th>Eluate volume/assay replicate</th>
<th>Volume of original specimen/assay replicate*</th>
<th>Assay replicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO qRT-PCR assay for avian H7N9</td>
<td>Primer-probe</td>
<td>39</td>
<td>1.0 ml</td>
<td>20 µl</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Life Technologies VetMAX™-Gold SIV Detection Kit</td>
<td>Primer-probe</td>
<td>44</td>
<td>1.0 ml</td>
<td>32 µl</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Quidel Molecular Influenza A + B assay</td>
<td>Primer-probe</td>
<td>49</td>
<td>0.18 ml</td>
<td>21.6 µl</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Quidel Sofia Influenza A + B assay</td>
<td>Antigen</td>
<td>15</td>
<td>Per package insert</td>
<td>N/A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Remel Xpect Flu A&B assay</td>
<td>Antigen</td>
<td>15</td>
<td>Per package insert</td>
<td>N/A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quidel Quickvue influenza assay</td>
<td>Antigen</td>
<td>10</td>
<td>Per package insert</td>
<td>N/A</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

WHO, World Health Organization; N/A, not applicable for this assay.
* The detection time estimated according to the manufacturer's instructions of each assay.
* Volume of eluate per assay replicate multiplied by the ratio of original volume extracted: volume eluted for qRT-PCR assays, or volume of original specimen added to antigen detection assays.

Table 2

A comparison of commercial influenza diagnostics against a panel of 97 poultry cloacal swab specimens for H7N9, China.

<table>
<thead>
<tr>
<th>Diagnostic assay</th>
<th>% Influenza positive</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO qRT-PCR assay for avian H7N9 (repeat)</td>
<td>27.8</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>Life Technologies VetMAX™-Gold SIV Detection Kit</td>
<td>30.9</td>
<td>1.00(0.87,1.00)</td>
<td>0.96(0.88,0.99)</td>
</tr>
<tr>
<td>Quidel Molecular Influenza A + B assay</td>
<td>25.8</td>
<td>0.85(0.66,0.96)</td>
<td>0.97(0.90,1.00)</td>
</tr>
<tr>
<td>Quidel Sofia Influenza A + B</td>
<td>9.3</td>
<td>0.22(0.09,0.42)</td>
<td>0.96(0.88,0.99)</td>
</tr>
<tr>
<td>Remel Xpect Flu A&B assay</td>
<td>3.1</td>
<td>0.07(0.01,0.24)</td>
<td>0.99(0.92,1.00)</td>
</tr>
<tr>
<td>Quidel Quickvue influenza assay</td>
<td>0</td>
<td>(N/A)</td>
<td>(N/A)</td>
</tr>
</tbody>
</table>

WHO, World Health Organization; CI, confidence interval. The WHO qRT-PCR assay for avian H7N9 was used as the gold standard for these comparisons.

run using specimens that were negative by both the WHO qRT-PCR influenza A and the WHO qRT-PCR H7N9 assays. As we had no other way to evaluate the specimens where the 3 molecular assays were discordant, it cannot be ruled out that the two commercial assays performed better than the WHO H7N9 assay.

5. Discussion

As the H7N9 virus is newly emergent and sparse data are available regarding commercial assay performance against this pathogen in both humans and animals, we sought to compare the 5 US commercial assays with the WHO H7N9 assay in detecting H7N9-positive fecal swab specimens. We employed the Life Technologies VetMAX™-Gold SIV Detection Kit, the only USDA-licensed molecular assay for swine influenza virus (approved for use with swine nasal swabs only), and 4 commercial assays often used in evaluating humans for influenza A or B infection: Remel Xpect Flu A&B (not designed for testing of animal samples), Quidel Quickvue influenza, Quidel Sofia Influenza A&B, and Quidel Molecular Influenza A + B assay (specifically designed to test human samples).

Considering the WHO H7N9 assay as the gold standard, not unexpectedly the two molecular assays (Life Technologies VetMAX™-Gold SIV Detection Kit and the Quidel Molecular Influenza A + B assay) outperformed the 3 rapid point-of-care assays. This is consistent with prior studies [7,8]. The decreased sensitivity of the rapid influenza diagnostic tests is especially common when viral concentration is low [8,9]. This could be particularly true for specimens tested in this study, as healthy H7N9-infected poultry may not have shed large amounts of virus. It is also possible that viral degradation occurred due to the several freeze–thaws during processing. Finally, it is also quite possible that fecal material in the specimens inhibited antigen detection.

Regarding the discrepant results of the Life Technologies VetMAX™-Gold SIV Detection Kit and the Quidel Molecular Influenza A + B assay with the WHO H7N9 assay for 7 samples, we...

Table 3

G_{c} values for the cloacal specimens for which the molecular assays were discordant.

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>1st round G_{c} results (single run)</th>
<th>2nd round G_{c} results (mean value of 3 runs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WHO qRT-PCR assay for influenza A</td>
<td>WHO qRT-PCR assay for avian H7N9</td>
</tr>
<tr>
<td></td>
<td>Life Technologies VetMAX™-Gold SIV Detection Kit</td>
<td>Quidel Molecular Influenza A + B assay</td>
</tr>
<tr>
<td></td>
<td>WHO qRT-PCR assay for avian H7N9</td>
<td>WHO qRT-PCR assay for avian H7N9</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>NA</td>
<td>33.73</td>
</tr>
<tr>
<td>34</td>
<td>NA</td>
<td>37.65</td>
</tr>
<tr>
<td>54</td>
<td>NA</td>
<td>37.02</td>
</tr>
<tr>
<td>74</td>
<td>35.82</td>
<td>36.47</td>
</tr>
<tr>
<td>75</td>
<td>37.18</td>
<td>36.54</td>
</tr>
<tr>
<td>96</td>
<td>33.71</td>
<td>34.87</td>
</tr>
<tr>
<td>97</td>
<td>34.75</td>
<td>35.22</td>
</tr>
</tbody>
</table>

WHO, World Health Organization; NA, G_{c} value was undetermined.
can only speculate regarding these differences. As the Life Technologies VetMAX™-Gold SIV Detection Kit has three molecular targets, perhaps it is more sensitive than the WHO H7N9 assay. As the Quidel Molecular Influenza A+B assay can detect influenza B viruses, one might wonder if influenza B RNA was a cause for some of the discordance. This seems unlikely in that influenza B viruses have not been detected in poultry, and each time the Quidel Molecular Influenza A+B assay was run, the signal for influenza B virus was negative. It seems more likely that the molecular assays differed due to varying abilities to detect small amounts of H7N9 viral RNA. The C_\text{\textsubscript{v}} values in Table 3 seem to support this position. Additionally, the different thermocycle steps and amplification times might also have contributed to the discrepancies. It is unfortunate that we did not plan viral load studies to better examine causes for disagreement between assays. In a recent, rather elegant experiment, Hatchette et al. found molecular influenza assays (commercial and in-house) to have markedly different abilities to detect known concentrations of H7N9 virus [10]. They argue that in a setting where a patient has risk factors for novel influenza virus infection, laboratories should be slow to embrace negative influenza A assay results when the performance characteristics of the employed influenza A assay has not been well-studied against the novel virus in question. Too often a novel virus infection has been missed by generic influenza A assays.

Overall, while additional evaluation of human clinical samples seems prudent, these study results suggest that several of the currently available molecular assays, based upon their successful detection of H7N9 virus in poultry specimens, may also prove, through similar research, to be effective in screening human samples for the presence of H7N9 viruses. These data also suggest that some commercial assays may be ready for comprehensive evaluation as diagnostics for influenza A virus detection among poultry, a characteristic none of the studied assays were originally designed to perform. Detecting and characterizing circulating novel influenza A virus among healthy chickens seems an important public health activity. Such influenza virus surveillance has already proven to be useful, as demonstrated by recent studies that have offered valuable insights into the possible origin and transmission of H7N9 viruses infecting humans [11,12].

6. Conclusions

In examining poultry specimens, where WHO H7N9 qRT-PCR or other H7N9-specific assays are not available, it appears from these data that the Life Technologies VetMAX™-Gold SIV Detection Kit and the Quidel Molecular Influenza A+B assays have comparable detection parameters with the WHO H7N9 qRT-PCR assay.

Funding

This research was supported by Program of International S&T Cooperation (2013DFA30800) of Ministry of Science & Technology of China Jiangsu Provincial Project of Preventive Medicine Research (Y201026), Wuxi Development Project of Science and Technology (CSZ201051), and Wuxi Major Project of Health Bureau (G201201), and by Dr. Gray's indirect research funds at the University of Florida. Diagnostic supplies and modest funding to execute the study were provided by Life Technologies Austin, TX, USA; Quidel Inc., 10165 McKellar Court, San Diego, CA 92121, USA; and Remel Inc., 12150 Santa Fe Drive, Lenexa, KS 66215, USA.

Competing interest

The authors declare no competing interests or conflict of interest.

Ethical approval

The swab collections from poultry were overseen by Wuxi Animal Health Inspection, Wuxi City, Jiangsu Province.

Acknowledgements

The authors thank the following professionals for their technical guidance: Johnny Callahan, PhD of Life Technologies, Austin, TX, USA; Tammi Ranalli, PhD and John D. Tamerius, PhD of Quidel Inc., San Diego, CA, USA; Mary Ann Silvius of Remel Inc., Lenexa, KS, USA; Yin Wo, MS of the State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jcv.2014.01.009.

References

[4] WHO. Number of confirmed human cases of avian influenza A(H7N9) reported to WHO; 2013.